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Appendix W3.7
System Identification

W3.7.1 A Perspective on System Identification
In order to design controls for a dynamic system, it is necessary to have
a model that will adequately describe the system’s dynamics. The infor-
mation available to the designer for this purpose is typically of three
kinds.

1. Physical model: First, there is the knowledge of physics, chem-
istry, biology, and the other sciences which have over the years devel-
oped equations of motion to explain the dynamic response of rigid and
flexible bodies, electric circuits and motors, fluids, chemical reactions,
and many other constituents of systems to be controlled. The model
based on this knowledge is referred to as a “physical” model. There are
many advantages to this approach, including ease of controller devel-
opment and testing. One disadvantage of this approach is that a fairly
high-fidelity physical model must be developed.

2. Black box model: It is often the case that for extremely com-
plex physical phenomena the laws of science are not adequate to give
a satisfactory description of the dynamic plant that we wish to con-
trol. Examples include the force on a moving airplane caused by a
control surface mounted on a wing, and the heat of combustion of a fos-
sil fuel of uncertain composition. In these circumstances, the designer
turns to data taken from experiments directly conducted to excite the
plant and measure its response. The second approach uses an empir-
ical or heuristic model referred to as the “black box” model. In this
approach, the control engineer injects open-loop commands into the
system and records the sensor response. The process of constructing
models from experimental data is called system identification. Standard
system identification techniques (for example, linear least-squares) are
used to identify a dynamic input/output model. The advantage of this
technique is that the control engineer does not need to have a deep
understanding of how the system physically behaves, but instead can
design a controller solely based on the derived model. There are several
major disadvantages to this approach. First, the control engineer must
have access to working hardware. Another serious disadvantage of this
approach is that it does not provide insight or physical understanding
of how specific hardware modifications will affect the control—usually
hardware modifications require the control engineer to repeat the full
cycle of system identification, control design, and validation. The
advantage of this approach is that we use logic and data to model
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inputs and outputs, and the detailed knowledge of the physics is not
required.

3. Grey box model: The third approach is the use of the combination
of physical and empirical models referred to as “grey box” modeling.

In identifying models for control, our motivation is very different
from that of modeling as practiced in the sciences. In science, one seeks
to develop models of nature as it is; in control, one seeks to develop
models of the plant dynamics that will be adequate for the design of a
controller that will cause the actual dynamics to be stable and to give
good performance. The initial design of a control system typically con-
siders a small signal analysis and is based on models that are linear and
time-invariant (LTI). This is referred to as a “control relevant” model.
Having accepted that the model is to be linear, we still must choose
between several alternative descriptions of linear systems. If we exam-
ine the design methods described in the earlier chapters, we find that
the required plant models may be grouped in two categories: paramet-
ric and nonparametric. For design via root locus or pole assignment,
we require a parametric description such as a transfer function or a
state-variable description from which we can obtain the poles and zeros
of the plant. These equivalent models are completely described by the
numbers that specify the coefficients of the polynomials, the elements of
the state-description matrices, or the numbers that specify the poles and
zeros. In either case, we call these numbers the parameters of the model,
and the category of such models is a parametric description of the plantParametric model
model.

In contrast to parametric models, the frequency-response meth-
ods of Nyquist, Bode, and Nichols require the curves of amplitude
and phase of the transfer function G(jω) = Y(jω)/U(jω) as functions
of ω. Clearly, if we happen to have a parametric description of the
system, we can compute the transfer function and the corresponding
frequency response. However, if we are given the frequency response or
its inverse transform, the impulse response, without parameters (per-
haps obtained from experimental data), we have all we need to design a
lead, lag, notch, or other compensation to achieve a desired bandwidth,
phase margin, or other frequency response performance objective with-
out ever knowing what the parameters are. We call the functional curves
of G(jω) a nonparametric model because, in principle, there is no finiteNonparametric model
set of numbers that describes it exactly.

Because of the large data records necessary to obtain effective mod-
els and the complexity of many of the algorithms used, the use of
computer aids is essential in identification. Developments such as Mat-
lab’s System Identification Toolbox are enormous aids to the practical
use of the system identification techniques. For detailed discussion on
system identification, the reader is referred to Franklin, Powell, and
Workman (1998).
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W3.7.2 Obtaining Models from Experimental Data
There are several reasons for using experimental data to obtain a model
of the dynamic system to be controlled. In the first place, the best
theoretical model built from equations of motion is still only an approx-
imation of reality. Sometimes, as in the case of a very rigid spacecraft,
the theoretical model is extremely good. Other times, as with many
chemical processes such as papermaking or metalworking, the theoret-
ical model is very approximate. In every case, before the final control
design is done, it is important and prudent to verify the theoretical
model with experimental data. Second, in situations for which the the-
oretical model is especially complicated or the physics of the process
is poorly understood, the only reliable information on which to base
the control design is the experimental data. Finally, the system is some-
times subject to online changes that occur when the environment of the
system changes. Examples include when an aircraft changes altitude or
speed, a paper machine is given a different composition of fiber, or a
nonlinear system moves to a new operating point. On these occasions,
we need to “retune” the controller by changing the control parameters.
This requires a model for the new conditions, and experimental data
are often the most effective, if not the only, information available for the
new model.

There are four kinds of experimental data for generating a model:Our sources of
experimental data

1. Transient response, such as comes from an impulse or a step;
2. Frequency-response data, which result from exciting the system with

sinusoidal inputs at many frequencies;
3. Stochastic steady-state information, as might come from flying an

aircraft through turbulent weather or from some other natural
source of randomness; and

4. Pseudorandom-noise data, as may be generated in a digital com-
puter.

Each class of experimental data has its properties, advantages, and
disadvantages.

Transient-response data are quick and relatively easy to obtain.Transient response
They are also often representative of the natural signals to which the
system is subjected. Thus, a model derived from such data can be reli-
able for designing the control system. On the other hand, in order for
the signal-to-noise ratio to be sufficiently high, the transient response
must be highly noticeable. Consequently, the method is rarely suit-
able for normal operations, so the data must be collected as part of
special tests. A second disadvantage is the data do not come in a
form suitable for standard control systems designs, and some parts
of the model, such as poles and zeros, must be computed from the
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data.1 This computation can be simple in special cases or complex in
the general case.

Frequency-response data (see Chapter 6) are simple to obtain, butFrequency response
substantially more time consuming than transient-response informa-
tion. This is especially so if the time constants of the process are
large, as often occurs in chemical processing industries. As with the
transient-response data, it is important to have a good signal-to-noise
ratio, so obtaining frequency-response data can be very expensive. On
the other hand, as we will see in Chapter 6, frequency-response data
are exactly in the right form for frequency-response design methods;
so once the data have been obtained, the control design can proceed
immediately.

Normal operating records from a natural stochastic environmentStochastic steady-state
at first appear to be an attractive basis for modeling systems, since
such records are by definition nondisruptive and inexpensive to obtain.
Unfortunately, the quality of such data is inconsistent, tending to be
worse just when the control is best, because then the upsets are min-
imal and the signals are smooth. At such times, some or even most
of the system dynamics are hardly excited. Because they contribute
little to the system output, they will not be found in the model con-
structed to explain the signals. The result is a model that represents only
part of the system and is sometimes unsuitable for control. In some
instances, as occurs when trying to model the dynamics of the elec-
troencephalogram (brain waves) of a sleeping or anesthetized person
to locate the frequency and intensity of alpha waves, normal records
are the only possibility. Usually they are the last choice for control
purposes.

Finally, the pseudorandom signals that can be constructed usingPseudorandom noise
(PRBS) digital logic have much appeal. Especially interesting for model mak-

ing is the pseudorandom binary signal (PRBS). The PRBS takes on the
value +A or −A according to the output (1 or 0) of a feedback shift
register. The feedback to the register is a binary sum of various states
of the register that have been selected to make the output period (which
must repeat itself in finite time) as long as possible. For example, with a
register of 20 bits, 220 − 1 (over a million) steps are produced before the
pattern repeats. Analysis beyond the scope of this text has revealed that
the resulting signal is almost like a broadband random signal. Yet this
signal is entirely under the control of the engineer who can set the level
(A) and the length (bits in the register) of the signal. The data obtained
from tests with a PRBS must be analyzed by computer and both special-
purpose hardware and programs for general-purpose computers have
been developed to perform this analysis.

1Ziegler and Nichols (1943), building on the earlier work of Callender et al. (1936), use
the step response directly in designing the controls for certain classes of processes. See
Chapter 4 for details.
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W3.7.3 Models from Transient-Response Data
To obtain a model from transient data, we assume a step response
is available. If the transient is a simple combination of elementary
transients, then a reasonable low-order model can be estimated using
hand calculations. For example, consider the step response shown in
Fig. W3.4. The response is monotonic and smooth. If we assume it is
given by a sum of exponentials, we can write

y(t) = y(∞) + Ae−αt + Be−βt + Ce−γ t + · · · . (W3.2)

Subtracting off the final value and assuming that −α is the slowest pole,
we write

y − y(∞) ∼= Ae−αt,

log10[y − y(∞)] ∼= log10 A − αt log10 e,
∼= log10 A − 0.4343αt. (W3.3)

This is the equation of a line whose slope determines α and inter-
cept determines A. If we fit a line to the plot of log10[y − y(∞)]
(or log10[y(∞) − y] if A is negative), then we can estimate A and
α. Once these are estimated, we plot y − [y(∞) + Ae−αt], which
as a curve approximates Be−βt and on the log plot is equivalent to
log10 B −0.4345βt. We repeat the process, each time removing the slow-
est remaining term, until the data stop is accurate. Then we plot the
final model step response and compare it with data so we can assess the
quality of the computed model. It is possible to get a good fit to the step
response and yet be far off from the true time constants (poles) of the
system. However, the method gives a good approximation for control of
processes whose step responses look like Fig. W3.4.

EXAMPLE W3.5 Determining the Model from Time-Response Data

Find the transfer function that generates the data given in Table W3.1
and plotted in Fig. W3.5.

Solution. Table W3.1 shows, and Fig. W3.5 implies, that the final value
of the data is y(∞) = 1. We know that A is negative because y(∞)

is greater than y(t). Therefore, the first step in the process is to plot
log10[y(∞) − y], which is shown in Fig. W3.6. From the line (fitted by
eye), the values are

Figure W3.4
A step response
characteristic of many
chemical processes

t

y(t)

1.0
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TABLE W3.1 Step Response Data

t y(t) t y(t)

0.1 0.000 1.0 0.510
0.1 0.005 1.5 0.700
0.2 0.034 2.0 0.817
0.3 0.085 2.5 0.890
0.4 0.140 3.0 0.932
0.5 0.215 4.0 0.975

∞ 1.000

Based on Sinha, N. K. and B. Kuszta,
Modeling and Identification of Dynamic
Systems. NewYork: Van Nostrand, 1983.

Figure W3.5
Step response data in
Table W3.1
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log10 |A| = 0.125,

0.4343α = 1.602 − 1.167
�t

= 0.435
1

⇒ α ∼= 1.

Thus

A = −1.33,

α = 1.0.

If we now subtract 1 + Aeαt from the data and plot the log of the
result, we find the plot of Fig. W3.7. Here we estimate

log10 B = −0.48,

0.4343β = −0.48 − (−1.7)

0.5
= 2.5,
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Figure W3.6
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Figure W3.7
log10[y − (1 + Ae−αt)]
versus t
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β ∼= 5.8,

B = 0.33.

Combining these results, we arrive at the y estimate

ŷ(t) ∼= 1 − 1.33e−t + 0.33e−5.8t. (W3.4)

Equation (W3.4) is plotted as the colored line in Fig. W3.8 and shows a
reasonable fit to the data, although some error is noticeable near t = 0.

From ŷ(t), we compute

Ŷ(s) = 1
s

− 1.33
s + 1

+ 0.33
s + 5.8
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Figure W3.8
Model fits to the
experimental data
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A = -1.33, a = 1, B = 0.33, b = 5.8

A = -1.37, a = 1, B = 0.37, b = 4.3

= (s + 1)(s + 5.8) − 1.33s(s + 5.8) + 0.33s(s + 1)

s(s + 1)(s + 5.8)

= −0.58s + 5.8
s(s + 1)(s + 5.8)

.

The resulting transfer function is

G(s) = −0.58(s − 10)

(s + 1)(s + 5.8)
.

Notice this method has given us a system with a zero in the RHP,
even though the data showed no values of y that were negative. Very
small differences in the estimated value for A, all of which approxi-
mately fit the data, can cause values of β to range from 4 to 6. This
illustrates the sensitivity of pole locations to the quality of the data and
emphasizes the need for a good signal-to-noise ratio.

By using a computer to perform the plotting, we are better able to
iterate the four parameters to achieve the best overall fit. The data pre-
sentation in Figs. W3.6 and W3.7 can be obtained directly by using a
semilog plot. This eliminates having to calculate log10 and the exponen-
tial expression to find the values of the parameters. The equations of
the lines to be fit to the data are y(t) = Aeαt and y(t) = Beβt, which
are straight lines on a semilog plot. The parameters A and α, or B and
β, are iteratively selected so the straight line comes as close as possi-
ble to passing through the data. This process produces the improved fit
shown by the dashed black line in Fig. W3.8. The revised parameters,
A = −1.37, B = 0.37, and β = 4.3 result in the transfer function

G(s) = −0.22s + 4.3
(s + 1)(s + 4.3)

.

The RHP zero is still present, but it is now located at s ∼= +20 and has
no noticeable effect on the time response.
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This set of data was fitted quite well by a second-order model. In
many cases, a higher-order model is required to explain the data and the
modes may not be as well separated.

If the transient response has oscillatory modes, then these can
sometimes be estimated by comparing them with the standard plots of
Fig. 3.18. The period will give the frequency ωd , and the decay from
one period to the next will afford an estimate of the damping ratio. If
the response has a mixture of modes not well separated in frequency,
then more sophisticated methods need to be used. One such is least-Least-squares system

identification squares system identification, in which a numerical optimization routine
selects the best combination of system parameters so as to minimize the
fit error. The fit error is defined to be a scalar cost function

J =
∑

i

(ydata − ymodel)
2, i = 1, 2, 3, · · · , for each data point,

so fit errors at all data points are taken into account in determining the
best value for the system parameters.

W3.7.3.1 Models from Other Data

As mentioned early in Section 3.1.2, we can also generate a model using
frequency-response data, which are obtained by exciting the system with
a set of sinusoids and plotting G(jω). In Chapter 6, we show how such
plots can be used directly for design. Alternatively, we can use the fre-
quency response to estimate the poles and zeros of a transfer function
using straight-line asymptotes on a logarithmic plot.

The construction of dynamic models from normal stochastic oper-
ating records or from the response to a PRBS can be based either on
the concept of cross-correlation or on the least-squares fit of a discrete
equivalent model, both topics in the field of system identification. They
require substantial presentation and background that are beyond the
scope of this text. An introduction to system identification can be found
in Chapter 8 of Franklin et al. (1998), and a comprehensive treatment
is given in Ljüng (1999). Based largely on the work of Professor Ljüng,
the Matlab Toolbox on Identification provides substantial software to
perform system identification and to verify the quality of the proposed
models.

W3.7.4 Obtaining a Pole-Zero Model from
Frequency-Response Data

As we pointed out earlier, it is relatively easy to obtain the frequency-
response of a system experimentally. Sometimes it is desirable to obtain
an approximate model, in terms of a transfer function, directly from
the frequency response. The derivation of such a model can be done
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to various degrees of accuracy. The method described in this section is
usually adequate and is widely used in practice.

There are two ways to obtain a model from frequency-response
data. In the first case, we can introduce a sinusoidal input, measure
the gain (logarithm of the amplitude ratio of output to input) and the
phase difference between output and input, and accept the curves plot-
ted from this data as the model. Using the methods given in previous
sections, we can derive the design directly from this information. In the
second case, we wish to use the frequency data to verify a mathematical
model obtained by other means. To do so, we need to extract an approx-
imate transfer function from the plots, again by fitting straight lines to
the data, estimating break points (that is, finding the poles and zeros),
and using Fig. 6.3 to estimate the damping ratios of complex factors
from the frequency overshoot. The next example illustrates the second
case.

EXAMPLE W3.6 Transfer Function from Measured Frequency Response

Determine a transfer function from the frequency response plotted in
Fig. W3.9, where frequency f is plotted in hertz.

Solution. Drawing an asymptote to the final slope of −2 (or −40 db
per decade), we assume a break point at the frequency where the phase
is −90◦. This occurs at f1 ∼= 1.66 Hz (ω1 = 2π f1 = 10.4 rad/sec). We
need to know the damping ratio in order to subtract out this second-
order pole. For this, the phase curve may be of more help. Since the
phase around the break-point frequency is symmetric, we draw a line
at the slope of the phase curve at f1 to find that the phase asymptote
intersects the 0◦ line at f0 ∼= 0.71 Hz (or 4.46 rad/sec). This corresponds
to f1/f0 ∼= 2.34, which in time corresponds to ζ ∼= 0.5, as seen on the
normalized response curves in Fig. 6.3b. The magnitude curve with the
second-order factor taken out shows an asymptotic amplitude gain of
about 6.0 db, or a factor of 106.0/20 = 2.0. As this is a gain rise, it occurs
because of a lead compensation of the form

s/a + 1
s/b + 1

,

where b/a = 2.0. If we remove the second-order terms in the phase
curve, we obtain a phase curve with a maximum phase of about 20◦,
which also corresponds to a frequency separation of about 2. To locate
the center of the lead compensation, we must estimate the point of max-
imum phase based on the lead term alone, which occurs at the geometric
mean of the two break-point frequencies. The lead center seems to occur
at f2 ∼= 0.3 Hz (or ω2 = 1.88 rad/sec).

Thus, we have the relations
ab(1.88)2 = 3.55,

b
a

= 2,
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Figure W3.9
Experimental frequency
response
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from which we can solve

2a2 = 3.55,

a = 1.33,

b = 2.66.

Our final model is given byModel from measured
response

Ĝ(s) = (s/1.33) + 1
[(s/2.66) + 1][(s/10.4)2 + (s/10.4) + 1]

. (W3.5)

The actual data were plotted from

G(s) = (s/2) + 1
[(s/4) + 1][(s/10)2 + (s/10) + 1]

.
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As can be seen, we found the second-order term quite easily, but the
location of the lead compensation is off in center frequency by a fac-
tor of 4/2.66 ∼= 1.5. However, the subtraction of the second-order term
from the composite curve was not done with great accuracy, rather, by
reading the curves. Again, as with the transient response, we conclude
that by a bit of approximate plotting we can obtain a crude model (usu-
ally within a factor of 1.4 (±3 db) in amplitude and ±10◦ in phase) that
can be used for control design.

Refinements on these techniques with computer aids are rather
obvious, and an interactive program for removing standard first- and
second-order terms and accurately plotting the residual function would
greatly improve the speed and accuracy of the process. It is also com-
mon to have computer tools that can find the parameters of an assumed
model structure by minimizing the sum of squares of the difference
between the model’s frequency response and the experimental frequency
response.

Further Reading for System Identification:
[1] L. Ljung, Perspectives on System Identification, Annual Reviews

in Control, 34, pp. 1–12, Elsevier, 2010.
[2] L. Ljung, System Identification: Theory for the User, 2nd Ed.,

Prentice-Hall, 1999.
[3] G. F. Franklin, J. D. Powell, M. L. Workman, Digital Control of

Dynamic Systems, 3rd Ed. Ellis-Kagle Press, 1998.
[4] M. B. Tischler and R. K. Remple, Aircraft and Rotorcraft System

Identification: Engineering Methods with Flight-Test Examples, AIAA,
2006.

[5] R. Pintelon and J. Schoukens, System Identification: A Fre-
quency Domain Approach, 2nd ed., Wiley-IEEE Press, 2012.

[6] System Identification Toolbox, The Mathworks.
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