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Appendix W8.7
Discrete State-Space Design
Methods

We have seen in previous chapters that a linear, constant-coefficient
continuous system can be represented by a set of first-order matrix
differential equations of the form

ẋ = Ax + Bu, (W8.1)

where u is the control input to the system. The output equation can be
expressed as

y = Cx + Du. (W8.2)
The solution to these equations (see Franklin et al., 1998) is

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bu(τ ) dτ . (W8.3)

It is possible to use Eq. (W8.3) to obtain a discrete state-space repre-
sentation of the system. Because the solution over one sample period
results in a difference equation, we can alter the notation a bit (letting
t = kT + T and t0 = kT) to arrive at a particularly useful version of
Eq. (W8.3):

x(kT + T) = eAT x(kT) +
∫ kT+T

kT
eA(kT+T−τ)Bu(τ ) dτ . (W8.4)

This result is not dependent on the type of hold, because u is speci-
fied in terms of its continuous time history u(τ ) over the sample interval.
To find the discrete model of a continuous system where the input u(t)
is the output of a ZOH, we let u(τ ) be a constant throughout the sample
interval—that is,

u(τ ) = u(kT), kT ≤ τ < kT + T .

To facilitate the solution of Eq. (W8.4) for a ZOH, we let

η = kT + T − τ ,

which converts Eq. (W8.4) to

x(kT + T) = eAT x(kT) +
(∫ T

0
eAη dη

)
Bu(kT).

If we let
� = eAT

and

� =
(∫ T

0
eAη dη

)
B, (W8.5)
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Eqs. (W8.4) and (W8.2) reduce to difference equations in standard form:Difference equations in
standard form

x(k + 1) = �x(k) + �u(k), (W8.6)

y(k) = Cx(k) + Du(k). (W8.7)

Here x(k + 1) is a shorthand notation for x(kT + T), x(k) for x(kT),
and u(k) for u(kT). The series expansion

� = eAT = I + AT + A2T2

2!
+ A3T3

3!
+ · · ·

also can be written as

� = I + AT�, (W8.8)

where

� = I + AT
2!

+ A2T2

3!
+ · · · .

The � integral in Eq. (W8.5) can be evaluated term by term to give

� =
∞∑

k=0

AkTk+1

(k + 1)!
B

=
∞∑

k=0

AkTk

(k + 1)!
TB

= �TB. (W8.9)

We evaluate � by a series in the form

� ∼= I + AT
2

{
I + AT

3

[
I + · · · AT

N − 1

(
I + AT

N

)]}
,

which has better numerical properties than the direct series. We then
find � from Eq. (W8.9) and � from Eq. (W8.8). For a discussion of
various methods of numerical determination of � and �, see Franklin
et al. (1998) and Moler and van Loan (1978, 2003). The evaluation ofMatlab c2d
the � and � matrices in practice is carried out by the c2d function in
Matlab.

To compare this method of representing the plant with the dis-
crete transfer function, we can take the z-transform of Eqs. (W8.6) and
(W8.7) with D = 0 to obtain

(zI − �)X(z) = �U(z), (W8.10)

Y(z) = CX(z). (W8.11)

Therefore,
Y(z)
U(z)

= G(z) = C(zI − �)−1�. (W8.12)
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EXAMPLE W8.1 Discrete State-Space Representation of 1/s2 Plant

Use the relation in this section to verify that the discrete model of
the 1/s2 plant preceded by a ZOH is that given in the solution to
Example 8.4.

Solution. The � and � matrices can be calculated using Eqs. (W8.8)
and (W8.9). Example 7.1 (with I = 1) showed that the values for A and
B are

A =
[

0 1
0 0

]
, B =

[
0
1

]
.

Because A2 = 0 in this case, we have

� = I + AT + A2T2

2!
+ · · ·

=
[

1 0
0 1

]
+
[

0 1
0 0

]
T =

[
1 T
0 1

]
,

� =
(

I + A
T
2!

)
TB

=
([

T 0
0 T

]
+
[

0 1
0 0

]
T2

2

)[
0
1

]
=
[

T2/2
T

]
.

Hence, using Eq. (W8.12), we obtain

G(z) = Y(z)
U(z)

= [1 0]
(

z
[

1 0
0 1

]
−
[

1 T
0 1

])−1 [ T2/2
T

]

= T2

2

[
z + 1

(z − 1)2

]
. (W8.13)

This is the same result we obtained using Eq. (8.41) and the z-transform
tables in Example 8.5.

Note to compute Y/U , we find the denominator of Eq. (W8.13) is
det(zI−�), which was created by the matrix inverse in Eq. (W8.12). This
determinant is the characteristic polynomial of the transfer function,
and the zeros of the determinant are the poles of the plant. We have
two poles at z = 1 in this case, corresponding to two integrations in this
plant’s equations of motion.

We can further explore the question of poles and zeros and the
state-space description by considering again the transform formulas
[Eqs. (W8.10) and (W8.11)]. One way to interpret transfer-function
poles from the perspective of the corresponding difference equation is
that a pole is a value of z such that the equation has a nontrivial solution
when the forcing input is zero. From Eq. (W8.10), this interpretation
implies that the linear equations

(zI − �)X(z) = 0,
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have a nontrivial solution. From matrix algebra the well-known require-
ment for a nontrivial solution is that det(zI − �) = 0. Using the system
in Example W8.1, we get

det(zI − �) = det
([

z 0
0 z

]
−
[

1 T
0 1

])

= det
[

z − 1 −T
0 z − 1

]

= (z − 1)2 = 0,

which is the characteristic equation, as we have seen. In Matlab, the
poles of the system are found by P = eig(Phi).

Along the same line of reasoning, a system zero is a value of z such
that the system output is zero even with a nonzero state-and-input com-
bination. Thus, if we are able to find a nontrivial solution for X(z0)

and U(z0) such that Y(z0) is identically zero, then z0 is a zero of the
system. In combining Eqs. (W8.10) and (W8.11), we must satisfy the
requirement that

[
zI − � −�

C 0

] [
X(z)
U(z)

]
= 0.

Once more the condition for the existence of nontrivial solutions is that
the determinant of the square coefficient system matrix be zero. For
Example W8.1, the calculation is

det

⎡
⎣ z − 1 −T −T2/2

0 z − 1 −T
1 0 0

⎤
⎦ = det

[ −T −T2/2
z − 1 −T

]

= T2 + T2

2
(z − 1)

= T2

2
z + T2

2

= T2

2
(z + 1).

Thus we have a single zero at z = −1, as we have seen from the transfer
function. In Matlab, the zeros are found by Z=tzero(Phi,Gam,C,D).

Much of the algebra for discrete state-space control design is the
same as for the continuous-time case discussed in Chapter 7. The poles
of a discrete system can be moved to desirable locations by linear state-
variable feedback

u = −Kx,

such that

det(zI − � + �K) = αc(z), (W8.14)
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provided that the system is controllable. The system is controllable if the
controllability matrix

C = [� �� �2� . . . �n−1�]

is full rank.
A discrete full-order estimator has the form

x̄(k + 1) = �x̄(k) + �u(k) + L[y(k) − Cx̄(k)],

where x̄ is the state estimate. The error equation,

x̃(k + 1) = (� − LC)x̃(k),

can be given arbitrary dynamics αe(z), provided the system is observ-
able, which requires that the observability matrix

O =

⎡
⎢⎢⎢⎢⎢⎣

C
C�

C�2

...
C�n−1

⎤
⎥⎥⎥⎥⎥⎦

be full rank.
As was true for the continuous-time case, if the open-loop transfer

function is

G(z) = Y(z)
U(z)

= b(z)
a(z)

,

then a state-space compensator can be designed such that

Y(z)
R(z)

= Ksγ (z)b(z)
αc(z)αe(z)

,

where r is the reference input. The polynomials αc(z) and αe(z) are
selected by the designer using exactly the same methods discussed in
Chapter 7 for continuous systems. αc(z) results in a control gain K such
that det(zI − � + �K) = αc(z), and αe(z) results in an estimator gain
L such that det(zI − � + LC) = αe(z). If the estimator is structured
according to Fig. 7.48a, the system zeros γ (z) will be identical to the
estimator poles αe(z), thus removing the estimator response from the
closed-loop system response. However, if desired, we can arbitrarily
select the polynomial γ (z) by providing suitable feed-forward from the
reference input. Refer to Franklin et al. (1998) for details.

EXAMPLE W8.2 State-Space Design of a Digital Controller

Design a digital controller for a 1/s2 plant to meet the specifications
given in Example 8.2. Use state-space design methods, including the use
of an estimator, and structure the reference input in two ways: (a) Use
the error command shown in Fig. 7.47b, and (b) use the state command
shown in Fig. 7.15 and Fig. 7.47a.
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Solution. We find the state-space model of the 1/s2 plant preceded by
a ZOH using the Matlab statements

sysSSc = ss([0 1;0 0], [0; 1], [1 0], 0];
T = 1;
sysSSd = c2d(sysSSc, T);
[Phi,Gam,C] = ssdata(sysSSd);

Using discrete analysis for Example 8.4, we find that the desired z-
plane roots are at z = 0.78 ± 0.18j. Solving the discrete pole-placement
problem involves placing the eigenvalues of � − �K, as indicated by
Eq. (W8.14). Likewise, the solution of the continuous pole-placement
problem involves placing the eigenvalues of A − BK, as indicated by
Eq. (7.69). Because these two tasks are identical, we use the same func-
tion in Matlab for the continuous and discrete cases. Therefore, the
control feedback matrix K is found by

pc = [0.78 + 0.18*j; 0.78 - 0.18*j];
K = acker(Phi,Gam,pc);

which yields
K = [0.0808 0.3996].

To ensure the estimator roots are substantially faster than the control
roots (so the estimator roots will have little effect on the output), we
choose them to be at z = 0.2 ± 0.2j. Therefore, the estimator feedback
matrix L is found by

pe = [0.2 + 0.2*j; 0.2 - 0.2*j];
L = acker(Phi, C, pe);

which yields

L =
[

1.6
0.68

]
.

The equations of the compensation for r = 0 (regulation to xT = [0 0])
are then

x̄(k + 1) = �x̄(k) + �u(k) + L[y(k) − Cx̄(k)], (W8.15)

u(k) = −Kx̄(k). (W8.16)

1. For the error command structure where the compensator is placed
in the feedforward path, as shown in Fig. 7.47b in the book, y(k)

from Eq. (W8.15) is replaced with y(k) − r, so the state description
of the plant plus the estimator (a fourth-order system whose state
vector is [x x̄]T ) is

A = [Phi - Gam*K; L*C Phi - Gam*K - L*C];
B = [0; 0; -L];
C = [1 0 0 0];
D = 0;
step(A,B,C,D).
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Figure W8.1
Step response of
Example W8.2
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Command structure from Fig. 7.15

The resulting step response in Fig. W8.1 shows a response
similar to that of the step responses in Fig. 8.21 in the text.

2. For the state command structure described in Section 7.9 in the
text, we wish to command the position element of the state vector
so

Nx =
[

1
0

]
,

and the 1/s2 plant requires no steady control input for a con-
stant output y. Therefore Nu = 0. To analyze a system with this
command structure, we need to modify matrix B from the preced-
ing Matlab statement to properly introduce the reference input r
according to Fig.7.15. The Matlab statement

B = [Gam*K*Nx; Gam*K*Nx];

channels r into both the plant and estimator equally, thus not
exciting the estimator dynamics. The resulting step response in
Fig. W8.1 shows a substantial reduction in the overshoot with this
structure. In fact, the overshoot is now about 5%, which is expected
for a second-order system with ζ ∼= 0.7. The previous designs
all had considerably greater overshoot because of the effect of the
extra zero and pole.

SUMMARY OF STATE-SPACE DESIGN

• The continuous state-space form of a differential equation,

ẋ = Ax + Bu,

y = Cx + Du,
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has a discrete counterpart in the difference equations

x(k + 1) = �x(k) + �u(k),

y(k) = Cx(k) + Du(k),

where

� = eAT

� =
(∫ T

0
eAη dη

)
B.

These matrices can be computed in Matlab by [Phi, Gam] =
c2d(A,B,C,D) and used in state-space discrete design methods.

• The pole placement and estimation ideas are identical in the
continuous and discrete domains.

PROBLEMS

W8.1 In Problem 8.11, we dealt with an experiment in magnetic levitation
described by Eq. (8.54) that reduces to

ẍ = 1000x + 20i.

Let the sampling time be 0.01 sec.

(a) Use pole placement to design a controller for the magnetic levita-
tor so that the closed-loop system meets the following specifications:
settling time, ts ≤ 0.25 sec, and overshoot to an initial offset in x
that is less than 20%.

(b) Plot the step response of x, x̃, and i to an initial displacement in x.
(c) Plot the root locus for changes in the plant gain, and mark the pole

locations of your design.
(d) Introduce a command reference input r (as discussed in Section 7.9)

that does not excite the estimate of x. Measure or compute the
frequency response from r to the system error r − x and give the
highest frequency for which the error amplitude is less than 20% of
the command amplitude.

W8.2 Servomechanism for Antenna Elevation Control: Suppose it is desired to
control the elevation of an antenna designed to track a satellite. A photo
of such a system is shown in Fig. W8.2, and a schematic diagram is
depicted in Fig. W8.3. The antenna and drive parts have a moment of
inertia J and damping B, arising to some extent from bearing and aero-
dynamic friction, but mostly from the back emf of the DC drive motor.
The equation of motion is

J θ̈ + Bθ̇ = Tc + Td ,

where

Tc = net torque from the drive motor, (W8.17)

Td = disturbance torque due to wind. (W8.18)
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Figure W8.2
Satellite-tracking
antenna (Courtesy
Space Systems/Loral)

Figure W8.3
Schematic diagram of
satellite-tracking
antenna

u

If we define
B
J

= a, u = Tc

B
, and wd = Td

B
,

the equation simplifies to

1
a
θ̈ + θ̇ = u + wd .

After using the Laplace transformation, we obtain

θ(s) = 1
s(s/a + 1)

[u(s) + wd(s)],

or with no disturbance,

θ(s)
u(s)

= 1
s(s/a + 1)

= G2(s).
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With u(k) applied through a ZOH, the transfer function for an equiva-
lent discrete-time system is

G2(z) = θ(z)
u(z)

= K
z + b

(z − 1)(z − e−aT )
,

where

K = aT − 1 + e−aT

a
, b = 1 − e−aT − aTe−aT

aT − 1 + e−aT .

(a) Let a = 0.1 and x1 = θ̇ , and write the continuous-time state
equations for the system.

(b) Let T = 1 sec, and find a state feedback gain K for the equivalent
discrete-time system that yields closed-loop poles corresponding to

the following points in the s-plane: s = −1/2 ± j
√

3
2 . Plot the step

response of the resulting design.
(c) Design an estimator: Select L so αe(z) = z2.
(d) Using the values for K and L computed in parts (b) and (c) as

the gains for a combined estimator/controller, introduce a reference
input that will leave the state estimate undisturbed. Plot the response
of the closed-loop system due to a step change in the reference input.
Also plot the system response to a step wind-gust disturbance.

(e) Plot the root locus of the closed-loop system with respect to the plant
gain, and mark the locations of the closed-loop poles.

W8.3 Tank Fluid Temperature Control: The temperature of a tank of fluid with
a constant inflow and outflow rate is to be controlled by adjusting the
temperature of the incoming fluid. The temperature of the incoming
fluid is controlled by a mixing valve that adjusts the relative amounts of
hot and cold supplies of the fluid (see Fig. W8.4). The distance between
the valve and the point of discharge into the tank creates a time delay
between the application of a temperature change at the mixing valve and
the discharge of the flow with the changed temperature into the tank.
The differential equation governing the tank temperature is

Ṫe = 1
cM

(qin − qout),

where

Te = tank temperature,

c = specific heat of the fluid,

Figure W8.4
Tank temperature
control
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M = fluid mass contained in the tank,

qin = cṁinTei,

qout = cṁoutTe,

ṁ = mass flow rate (ṁin = ṁout),

Tei = temperature of fluid entering tank.

However, the temperature at the input to the tank at time t is equal to
the control temperature τd seconds in the past. This relationship may be
expressed as

Tei(t) = Tec(t − τd),

where

τd = delay time,

Tec = temperature of fluid immediately after the control valve and
directly controllable by the valve.

Combining constants, we obtain

Ṫe(t) + aTe(t) = aTec(t − τd),

where

a = ṁ
M

.

The transfer function of the system is thus

Te(s)
Tec(s)

= e−τds

s/a + 1
= G3(s).

To form a discrete transfer function equivalent to G3 preceded by a
ZOH, we must compute

G3(z) = Z
{(

1 − e−sT

s

)(
e−τd s

s/a + 1

)}
.

We assume for some integer l, τd = lT − mT , where 0 ≤ m < 1. Then

G3(z) = Z
{(

1 − e−sT

s

)(
e−lsT emsT

s/a + 1

)}

= (1 − z−1)z−lZ
{

emsT

s(s/a + 1)

}

= (1 − z−1)z−lZ
{

emsT

s
− emsT

s + a

}

= z − 1
z

(
1

zl

)
Z{1(t + mT) − e−a(t+mT)1(t + mT)}

= z − 1
z

(
1

zl

)(
z

z − 1
− e−amT z

z − e−aT

)

= 1

zl

[
(1 − e−amT )z + e−amT − e−aT

z − e−aT

]
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=
(

1 − e−amT

zl

)(
z + α

z − e−aT

)
,

and

α = e−amT − e−aT

1 − e−amT .

The zero location −α varies from α = ∞ at m = 0 to α = 0 as m → 1.
Note also G3(1) = 1.0 for all a, m, and l. For the specific values τd = 1.5,
T = 1, a = 1, l = 2, and m = 1

2 , the transfer function reduces to

G3(z) = 0.3935
z + 0.6065

z2(z − 0.3679)
.

(a) Write the discrete-time system equations in state-space form.
(b) Design a state feedback gain that yields αc(z) = z3.
(c) Design a state estimator with αe(z) = z3.
(d) Plot the root locus of the system with respect to the plant gain.
(e) Plot the step response of the system.

W8.4 Consider the linear equation Ax = b, where A is an n × n matrix. When
b is given, one way of solving for x is to use the discrete-time recursion

x(k + 1) = (I + cA)x(k) − cb,

where c is a scalar to be chosen.

(a) Show that the solution of Ax = b is the equilibrium point x∗ of
the discrete-time system. An equilibrium point x∗ of a discrete-time
system x(k + 1) = f(x(k)) satisfies the relation x∗ = f(x∗).

(b) Consider the error e(k) = x(k) − x∗. Write the linear equation that
relates the error e(k + 1) to e(k).

(c) Suppose |1 + cλi(A)| < 1, i = 1, . . . , n, where λi(A) denotes the ith
eigenvalue of A. Show that, starting from any initial guess x0, the
algorithm converges to x∗. [Hint: For any matrix B, λi(I + B) =
1 + λi(B).]

W8.5 The open-loop plant of a unity feedback system has the transfer function

G(s) = 1
s(s + 2)

.

Determine the transfer function of the equivalent digital plant using a
sampling period of T = 1 sec, and design a proportional controller for
the discrete-time system that yields dominant closed-loop poles with a
damping ratio ζ of 0.7.

W8.6 Write a computer program to compute � and � from A, B, and the sam-
ple period T . It is okay to use Matlab, but don’t use c2d. Write code in
Matlab to compute the discrete matrices using the relations developed in
this chapter. Use your program to compute � and � when

(a)

A =
[ −1 0

0 −2

]
, B =

[
1
1

]
, T = 0.2 sec,

(b)

A =
[ −3 −2

1 0

]
, B =

[
1
0

]
, T = 0.2sec.
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W8.7 Consider the following discrete-time system in state-space form:[
x1(k + 1)

x2(k + 1)

]
=
[

0 1
0 −1

] [
x1(k)

x2(k)

]
+
[

0
10

]
u(k).

Use state feedback to relocate all of the system’s poles to 0.5.

W8.8 Let

� =
[

1 T
0 1

]
and � =

[
T2/2

T

]
.

(a) Find a transformation matrix T so, if x = Tw, the state equations
for w will be in control canonical form.

(b) Compute the gain Kw so, if u = −Kww, the characteristic equation
will be αc(z) = z2 − 1.6z + 0.7.

(c) Use T from part (a) to compute Kx, which is the feedback gain
required by the state equations in x to achieve the desired charac-
teristic polynomial.

W8.9 Consider a system whose plant transfer function is 1/s2 and has a
piecewise constant input of the form

u(t) = u(kT), kT ≤ t < (k + 1)T .

(a) Show, if we restrict attention to the time instants kT , k = 0, 1, 2, . . .,
the resulting sampled-data system can be described by the equations[

x1(k + 1)

x2(k + 1)

]
=
[

1 0
T 1

] [
x1(k)

x2(k)

]
+
[

T
T2/2

]
u(k).

y(k) = [0 1][x1(k) x2(k)]T .

(b) Design a second-order estimator that will always drive the error in
the estimate of the initial state vector to zero in time 2T or less.

(c) Is it possible to estimate the initial state exactly with a first-order
estimator? Justify your answer.

W8.10 In this problem, you will show how to compute � by changing states so
that the system matrix is diagonal.

(a) Using an infinite series expansion, compute eAT for

A =
[ −1 0

0 −2

]
.

(b) Show if A = TAT−1 for some nonsingular transformation matrix T,
then

eAT = TeAT T−1.

(c) Show if

A =
[ −3 1

−2 0

]
,

there exists a T such that TAT−1 = A. (Hint: Write TA = AT,
assume four unknowns for the elements of T, and solve. Next show
that the columns of T are the eigenvectors of A.)

(d) Compute eAT .



<<
  /ASCII85EncodePages false
  /AllowTransparency true
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange.  For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 24
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


