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Appendix WA
A Review of Complex
Variables

This appendix is a brief summary of some results on complex vari-
ables theory, with emphasis on the facts needed in control theory. For
a comprehensive study of basic complex variables theory, see stan-
dard textbooks such as Brown and Churchill (1996) or Marsden and
Hoffman (1998).

WA.1 Definition of a Complex Number
The complex numbers are distinguished from purely real numbers in
that they also contain the imaginary operator, which we shall denote as
j. By definition,

j2 = −1 or j = √−1. (WA.1)

A complex number may be defined as

A = σ + jω, (WA.2)

where σ is the real part and ω is the imaginary part, denoted, respec-
tively, as

σ = Re(A), ω = Im(A). (WA.3)

Note the imaginary part of A is itself a real number.
Graphically, we may represent the complex number A in two ways.

In the Cartesian coordinate system (see Fig. WA.1a), A is represented
by a single point in the complex plane. In the polar coordinate system,
A is represented by a vector with length r and an angle θ ; the angle is
measured in radians counter-clockwise from the positive real axis (see
Fig. WA.1b). In polar form, the complex number A is denoted by

A = |A| · ∠ arg A = r · ∠θ = re jθ , 0 ≤ θ ≤ 2π , (WA.4)

where r—called the magnitude, modulus, or absolute value of A—is the
length of the vector representing A, namely,

r = |A| =
√

σ 2 + ω2, (WA.5)

and where θ is given by
tan θ = ω

σ
(WA.6)

or
θ = arg(A) = tan−1

(ω

σ

)
. (WA.7)
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Figure WA.1
The complex number A
represented in
(a) Cartesian and
(b) polar coordinates
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Figure WA.2
Arithmetic of complex numbers: (a) addition; (b) multiplication; (c) division

Care must be taken to compute the correct value of the angle,
depending on the sign of the real and imaginary parts (that is, one must
find the quadrant in which the complex number lies).

The conjugate of A is defined as

A∗ = σ − jω· (WA.8)

Therefore,

(A∗)∗ = A, (WA.9)

(A1 ± A2)
∗ = A∗

1 ± A∗
2, (WA.10)

(
A1

A2

)∗
= A∗

1

A∗
2

, (WA.11)

(A1A2)
∗ = A∗

1A∗
2, (WA.12)

Re(A) = A + A∗

2
, Im(A) = A − A∗

2j
, (WA.13)

AA∗ = (|A|)2. (WA.14)
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WA.2 Algebraic Manipulations
WA.2.1 Complex Addition
If we let

A1 = σ1 + jω1 and A2 = σ2 + jω2, (WA.15)

then

A1 + A2 = (σ1 + jω1) + (σ2 + jω2) = (σ1 + σ2) + j(ω1 + ω2). (WA.16)

Because each complex number is represented by a vector extending from
the origin, we can add or subtract complex numbers graphically. The
sum is obtained by adding the two vectors. This we do by constructing
a parallelogram and finding its diagonal, as shown in Fig. WA.2a. Alter-
natively, we could start at the tail of one vector, draw a vector parallel
to the other vector, then connect the origin to the new arrowhead.

Complex subtraction is very similar to complex addition.

WA.2.2 Complex Multiplication
For two complex numbers defined according to Eq. (WA.15),

A1A2 = (σ1 + jω1)(σ2 + jω2)

= (σ1σ2 − ω1ω2) + j(ω1σ2 + σ1ω2). (WA.17)

The product of two complex numbers may be obtained graphically
using polar representations, as shown in Fig. WA.2b.

WA.2.3 Complex Division
The division of two complex numbers is carried out by rationalization.
This means that both the numerator and denominator in the ratio are
multiplied by the conjugate of the denominator:

A1

A2
= A1A∗

2

A2A∗
2

= (σ1σ2 + ω1ω2) + j(ω1σ2 − σ1ω2)

σ 2
2 + ω2

2

. (WA.18)

From Eq. (WA.4), it follows that

A−1 = 1
r

e−jθ , r �= 0. (WA.19)

Also, if A1 = r1e jθ1 and A2 = r2e jθ2 , then

A1A2 = r1r2e j(θ1+θ2), (WA.20)

where |A1A2| = r1r2 and arg(A1A2) = θ1 + θ2, and

A1

A2
= r1

r2
e j(θ1−θ2), r2 �= 0, (WA.21)
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where
∣∣∣A1
A2

∣∣∣ = r1
r2

and arg
(

A1
A2

)
= θ1 − θ2. The division of complex

numbers may be carried out graphically in polar coordinates as shown
in Fig. WA.2c.

EXAMPLE WA.1 Frequency Response of First-Order System

Find the magnitude and phase of the transfer function G(s) = 1
s + 1 ,

where s = jω.

Solution. Substituting s = jω and rationalizing, we obtain

G( jω) = 1
σ + 1 + jω

σ + 1 − jω
σ + 1 − jω

= σ + 1 − jω
(σ + 1)2 + ω2 .

Therefore, the magnitude and phase are

|G( jω)| =
√

(σ + 1)2 + ω2

(σ + 1)2 + ω2 = 1√
(σ + 1)2 + ω2

,

arg(G( jω)) = tan−1
(

Im(G( jω))

Re(G( jω))

)
= tan−1

( −ω

σ + 1

)
·

WA.3 Graphical Evaluation of Magnitude and
Phase

Consider the transfer function

G(s) =
∏m

i=1(s + zi)∏n
i=1(s + pi)

. (WA.22)

The value of the transfer function for sinusoidal inputs is found by
replacing s with jω. The gain and phase are given by G( jω) and may
be determined analytically or by a graphical procedure. Consider the
pole-zero configuration for such a G(s) and a point s0 = jω0 on the
imaginary axis, as shown in Fig. WA.3. Also consider the vectors drawn
from the poles and the zero to s0. The magnitude of the transfer func-
tion evaluated at s0 = jω0 is simply the ratio of the distance from the
zero to the product of all the distances from the poles:

|G( jω0)| = r1

r2r3r4
. (WA.23)

The phase is given by the sum of the angles from the zero, minus
the sum of the angles from the poles:

arg G( jω0) = ∠G( jω0) = θ1 − (θ2 + θ3 + θ4). (WA.24)

This may be explained as follows: The term s+z1 is a vector addition of
its two components. We may determine this equivalently as s − (−z1),
which amounts to translation of the vector s + z1 starting at −z1, as
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Figure WA.3
Graphical
determination of
magnitude and phase
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Illustration of graphical
computation of s + z1
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shown in Fig. WA.4. This means that a vector drawn from the zero
location to s0 is equivalent to s + z1. The same reasoning applies to
the poles. We reflect p1, p2, and p3 about the origin to obtain the pole
locations. Then the vectors drawn from −p1, −p2, and −p3 to s0 are the
same as the vectors in the denominator represented in polar coordinates.
Note that this method may also be used to evaluate s0 at places in the
complex plane besides the imaginary axis.

WA.4 Differentiation and Integration
The usual rules apply to complex differentiation. Let G(s) be dif-
ferentiable with respect to s. Then the derivative at s0 is defined
as

G′(s0) = lim
s→s0

G(s) − G(s0)

s − s0
, (WA.25)

provided that the limit exists. For conditions on the existence of the
derivative, see Brown and Churchill (1996).

The standard rules also apply to integration, except that the
constant of integration c is a complex constant:

∫
G(s)ds =

∫
Re[G(s)]ds + j

∫
Im[G(s)]ds + c. (WA.26)
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WA.5 Euler’s Relations
Let us now derive an important relationship involving the complex
exponential. If we define

A = cos θ + j sin θ , (WA.27)

where θ is in radians, then

dA
dθ

= − sin θ + j cos θ = j2 sin θ + j cos θ

= j(cos θ + j sin θ) = jA. (WA.28)

We collect the terms involving A to obtain

dA
A

= jdθ . (WA.29)

Integrating both sides of Eq. (WA.29) yields

ln A = jθ + c, (WA.30)

where c is a constant of integration. If we let θ = 0 in Eq. (WA.30), we
find that c = 0 or

A = e jθ = cos θ + j sin θ . (WA.31)

Similarly,
A∗ = e−jθ = cos θ − j sin θ . (WA.32)

From Eqs. (WA.31) and (WA.32), it follows thatEuler’s relations

cos θ = e jθ + e−jθ

2
, (WA.33)

sin θ = e jθ − e−jθ

2j
. (WA.34)

WA.6 Analytic Functions
Let us assume G is a complex-valued function defined in the complex
plane. Let s0 be in the domain of G, which is assumed to be finite within
some disk centered at s0. Thus, G(s) is defined not only at s0 but also at
all points in the disk centered at s0. The function G is said to be analytic
if its derivative exists at s0 and at each point in the neighborhood of s0.

WA.7 Cauchy’s Theorem
A contour is a piecewise-smooth arc that consists of a number of smooth
arcs joined together. A simple closed contour is a contour that does not
intersect itself and ends on itself. Let C be a closed contour as shown in
Fig. WA.5a, and let G be analytic inside and on C. Cauchy’s theorem
states that ∮

C
G(s)ds = 0. (WA.35)
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Figure WA.5
Contours in the s-plane:
(a) a closed contour;
(b) two different paths
between A1 and A2
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There is a corollary to this theorem: Let C1 and C2 be two paths
connecting the points A1 and A2 as in Fig. WA.5b. Then,

∫

C1

G(s)ds =
∫

C2

G(s)ds. (WA.36)

WA.8 Singularities and Residues
If a function G(s) is not analytic at s0, but is analytic at some point in
every neighborhood of s0, it is said to be a singularity. A singular point
is said to be an isolated singularity if G(s) is analytic everywhere else in
the neighborhood of s0 except at s0. Let G(s) be a rational function (that
is, a ratio of polynomials). If the numerator and denominator are both
analytic, then G(s) will be analytic except at the locations of the poles
(that is, at the roots of the denominator). All singularities of rational
algebraic functions are pole locations.

Let G(s) be analytic except at s0. Then we may write G(s) in its
Laurent series expansion form:

G(s) = A−n

(s − s0)
n + . . . + A−1

(s − s0)
+ B0 + B1(s − s0) + . . . . (WA.37)

The coefficient A−1 is called the residue of G(s) at s0, and may be
evaluated as

A−1 = Res[G(s); s0] = 1
2π j

∮

C
G(s) ds, (WA.38)

where C denotes a closed arc within an analytic region centered at s0
that contains no other singularity, as shown in Fig. WA.6. When s0 is
not repeated with n = 1, we have

A−1 = Res[G(s); s0] = (s − s0)G(s)|s=s0 . (WA.39)

This is the familiar cover-up method of computing residues.
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Figure WA.6
Contour around an
isolated singularity
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WA.9 Residue Theorem
If the contour C contains l singularities, then Eq. (WA.39) may be
generalized to yield Cauchy’s residue theorem:

1
2π j

∮
G(s) ds =

l∑
i=1

Res[G(s); si]. (WA.40)

WA.10 The Argument Principle
Before stating the argument principle, we need a preliminary result from
which the principle follows readily.

Number of Poles and Zeros
Let G(s) be an analytic function inside and on a closed contour C,
except for a finite number of poles inside C. Then, for C described in
the positive sense (clockwise direction),

1
2π j

∮
G′(s)
G(s)

ds = N − P, (WA.41)

or

1
2π j

∮
d(ln G) = N − P, (WA.42)

where N and P are the total number of zeros and poles of G inside C,
respectively. A pole or zero of multiplicity k is counted k times.

Proof Let s0 be a zero of G with multiplicity k. Then, in some
neighborhood of that point, we may write G(s) as

G(s) = (s − s0)
k f (s), (WA.43)
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where f (s) is analytic and f (s0) �= 0. If we differentiate Eq. (WA.43), we
obtain

G′(s) = k(s − s0)
k−1f (s) + (s − s0)

kf ′(s). (WA.44)

Equation (WA.44) may be rewritten as

G′(s)
G(s)

= k
s − s0

+ f ′(s)
f (s)

. (WA.45)

Therefore, G′(s)/G(s) has a pole at s = s0 with residue K . This anal-
ysis may be repeated for every zero. Hence, the sum of the residues of
G′(s)/G(s) is the number of zeros of G(s) inside C. If s0 is a pole with
multiplicity l, we may write

h(s) = (s − s0)
lG(s), (WA.46)

where h(s) is analytic and h(s0) �= 0. Then Eq. (WA.46) may be rewritten
as

G(s) = h(s)
(s − s0)

l
. (WA.47)

Differentiating Eq. (WA.47), we obtain

G′(s) = h′(s)
(s − s0)

l
− lh(s)

(s − s0)
l+1

, (WA.48)

so
G′(s)
G(s)

= −l
s − s0

+ h′(s)
h(s)

. (WA.49)

This analysis may be repeated for every pole. The result is that the sum
of the residues of G′(s)/G(s) at all the poles of G(s) is −P.

The Argument Principle
Using Eq. (WA.38), we get

1
2π j

∮

C
d[ln G(s)] = N − P, (WA.50)

where d[ln G(s)] was substituted for G′(s)/G(s). If we write G(s) in polar
form, then ∮

�

d[ln G(s)] =
∮

�

d{ln |G(s)| + j arg[ln G(s)]}
= ln |G(s)||s=s2

s=s1
+ j arg G(s)|s=s2

s=s1
. (WA.51)

Because � is a closed contour, the first term is zero, but the second term
is 2π times the net encirclements of the origin:

1
2π j

∮

�

d[ln G(s)] = N − P. (WA.52)

Intuitively, the argument principle may be stated as follows: We let G(s)
be a rational function that is analytic except possibly at a finite num-
ber of points. We select an arbitrary contour in the s-plane so G(s)
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is analytic at every point on the contour (the contour does not pass
through any of the singularities). The corresponding mapping into the
G(s)-plane may encircle the origin. The number of times it does so is
determined by the difference between the number of zeros and the num-
ber of poles of G(s) encircled by the s-plane contour. The direction of
this encirclement is determined by which is greater, N (clockwise) or
P (counter-clockwise). For example, if the contour encircles a single
zero, the mapping will encircle the origin once in the clockwise direc-
tion. Similarly, if the contour encloses only a single pole, the mapping
will encircle the origin, this time in the counter-clockwise direction.
If the contour encircles no singularities, or if the contour encloses an
equal number of poles and zeros, there will be no encirclement of the
origin. A contour evaluation of G(s) will encircle the origin if there is
a nonzero net difference between the encircled singularities. The map-
ping is conformal as well, which means that the magnitude and sense
of the angles between smooth arcs is preserved. Chapter 6 provides
a more detailed intuitive treatment of the argument principle and its
application to feedback control in the form of the Nyquist stability
theorem.

WA.11 Bilinear Transformation
A bilinear transformation is of the form

w = as + b
cs + d

, (WA.53)

where a, b, c, d are complex constants, and it is assumed ad − bc �=
0. The bilinear transformation always transforms circles in the w-plane
into circles in the s-plane. This can be shown in several ways. If we solve
for s, we obtain

s = −dw + b
cw − a

. (WA.54)

The equation for a circle in the w-plane is of the form

|w − σ |
|w − ρ| = R. (WA.55)

If we substitute for w in terms of s in Eq. (WA.53), we get

|s − σ ′|
|s − ρ′| = R′, (WA.56)

where

σ ′ = σd − b
a − σc

, ρ′ = ρd − b
a − ρc

, R′ =
∣∣∣∣
a − ρc
a − σc

∣∣∣∣ R, (WA.57)

which is the equation for a circle in the s-plane. For alternative proofs,
the reader is referred to Brown and Churchill (1996) and Marsden and
Hoffman (1998).
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