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Problem Overview/Motivation

Temperature control is important in many thermal processing 
systems

The dynamic response of the system can change considerably depending on 
operating temperature, wafer types, and/or process conditions
Ideally one would like to get the exact same closed-loop temperature 
response (performance) despite these system variations (robustness)
One can achieve this by using real-time feedback control

In previous work, we used a simple example to compare three 
different control approaches in terms of their performance and 
robustness

Performance bounds were calculated by ‘gridding’ the parameter 
space, which requires a large number of simulations

In this work, robustness of the various controllers is evaluated using 
a Monte Carlo Simulation Technique



SC SOLUTIONSCopyright© 2012, SC Solutions, Inc. All Rights Reserved
3

Overview

Thermal Model of Lamp Heated Plate 

Process Variations and Robust Control

Recap of Control Methods

Monte Carlo Simulation Method

Performance Evaluation using Monte Carlo Results

Summary



SC SOLUTIONSCopyright© 2012, SC Solutions, Inc. All Rights Reserved
4

Thermal Model of Lamp Heated Plate
A tungsten-halogen lamp is shown 
heating a plate from below

The plate radiates, conducts, and 
convects heat to the walls and 
surroundings.

The system can be divided into a 
number of control volumes and the 
heat equation can be written for the 
net rate of temperature change: 

Thermal mass

For each control volume, i

Radiation Conduction Convection Electrical Power In

Sensed TemperatureDynamic System of Equations
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Plate Heat Loss – 1D Example

The heat loss from the plate to the surroundings 

Effective emissivity Effective heat transfer coefficient

Effective emissivity for 
infinite parallel surfaces

Surface 1 Surface 2

We will look at control performance when these two parameters (ε and h) vary.
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Process Variations and Robust Control

Plate emissivity can change in ways that are difficult to predict

Changes in gas flows or gas chemistry can change the heat losses

Changes can be “wafer-to-wafer” or during processing (dynamic).

If you knew how the losses changed, you could tune the controller 
for a specific process condition.

But often you cannot know about changes so the controller must be 
robust

Robustness here is defined as good performance for a wide range of 
process conditions. 
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Process Variations and Robust Control

The feedback controller is assumed to have no prior knowledge of 
these variations in the plant

Controller System

SensorReference Error Command

System Variations:

Effective 
emissivity

Effective heat 
transfer coefficient

Heat loss from plate to surroundings:
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Dynamic System Variation

First Order with Time Delay (FOTD) parameters for all systems

Delay Time

First order 
lag time

DC Gain

System Variations

System is inherently faster with smaller DC 
gain at higher temperature due to non-linear 
radiant cooling.
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Gain-Scheduled PID Control

Proportional
Gain

Integral
Gain

Derivative
Gain

G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback
Control of Dynamic Systems, 6th ed. Prentice-Hall, 2010.



SC SOLUTIONSCopyright© 2012, SC Solutions, Inc. All Rights Reserved
12

PID Control – Performance 
By trial-and-error we chose the gain 
values when h=20W/m2K, ε=0.2

Simulated 2 C/s, 50 C ramp,               
200 < T < 1150 C

Performance measures:

Settling time
Time from end of ramp until sensor stays 
within 0.5 C

Overshoot
How much response exceeds the 
reference in percent

Repeatability
Range of settling times

Noise accommodation
Effect of noise on control command

Settling time
20 to 120 sec.

200-250°C

650-700°C

1100-1150°C

Overshoot
1 to 4%
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Model-Based Control

Incorporate a mathematical model of the system directly into the 
controller.

Often referred to as Q-parameterization or Youla parameterization.

References for Q-parameterization Control Design

For stable P, ALL 
stable controllers 
can be expressed 
in this form!

Control design becomes 
choice of Q

We choose Q such that the 
closed-loop transfer function is
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MBC Control – Performance
Bandwidth of Td is only ‘tuning 
knob’:

Performance:
Settling time

Fast settling: 10 to 25 sec.
Overshoot

Very small: 0.05 to 0.15%
Repeatability

Tight range in settling time & 
overshoot

Noise accommodation
More sensitive to noise than PID

200-250°C

650-700°C

1100-1150°C

No Overshoot

Fast Settling

Good Repeatability

The model used in the controller is not told 
how the model in the simulation is varying
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Performance Comparison: Settling Time
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Performance Comparison: Overshoot
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Performance Comparison: Noise Accommodation

PID
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Monte Carlo Simulation Method

The term “Monte Carlo” is used to refer to a wide range of 
stochastic techniques meaning that they rely on random numbers 
and probability statistics to tackle problems

The term is coined after the casinos in the Principality of Monaco. 
Every game in a casino is a game of chance relying on random 
events: shuffling of cards, numbers on the dice, roulette wheel, etc.

It is used in a variety of problems ranging from economics, 
communications, nuclear physics, and in control theory

Allows analysis of complex systems that are otherwise intractable 
analytically
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Monte Carlo Simulation Method

Monte Carlo simulations are used to evaluate the performance 
robustness with respect to physical parameter variations when 
analytical approaches are difficult or not possible

The ranges of parameter variations (e.g. emissivity and heat 
transfer coefficient) are usually known

It is possible to map out the performance space with random 
selection of parameters within the allowable range and with given 
distributions using a pre-selected number of simulations

The advantage of this approach is that one can map out the 
performance space without simulating each parameter variation 
individually, which could take up considerably more simulations  
(e.g. 10 parameters using 5 values per parameter would require 9.76 million 
simulations, compared to for example 100 or 1000 Monte Carlo simulations 
where the parameters are varied randomly)
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Monte Carlo Simulation Process
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Each run of the Monte Carlo will produce different results depending on the seed.
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Parameter Distributions
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Heat transfer coefficient h:
Uniform distribution between 5 & 100

Emissivity e:
Normal distribution, mean=0.5, σ=0.15
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Monte Carlo Results: PID Settling Time
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Settling Time
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Monte Carlo Results: MBC Settling Time
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Settling Time
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Comparison of Overshoot from Monte Carlo Simulations
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Comparison of Settling Time from Monte Carlo Simulations
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Comparison of Noise Reduction from Monte Carlo Simulations
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Summary

In previous work, simulations were performed to compare the robustness & 
performance of different control methods for temperature control of plates.

The methods were compared with respect to:
worst-case settling time, 
overshoot, 
robustness (repeatability), 
noise accommodation.

Performance bounds were calculated by ‘gridding’ the parameter space, which 
requires a large number of simulations.

In this work, robustness of the various controllers is evaluated using Monte Carlo 
Simulations, which requires a significantly smaller number of simulations. 

The Monte Carlo simulation results compare well with the analytical gridding 
approach, and help to quickly identify trends and problem areas.
In addition, the Monte Carlo approach allows the user to be more specific about 
parameter variations by characterizing the random distribution.

These results were applied to real-time feedback control, but apply to other 
areas of AEC/APC as well, such as Fault Detection, Virtual Sensing, etc.


