Model-Based Temperature/CD Tuning of Multi-Zone Heated Plates

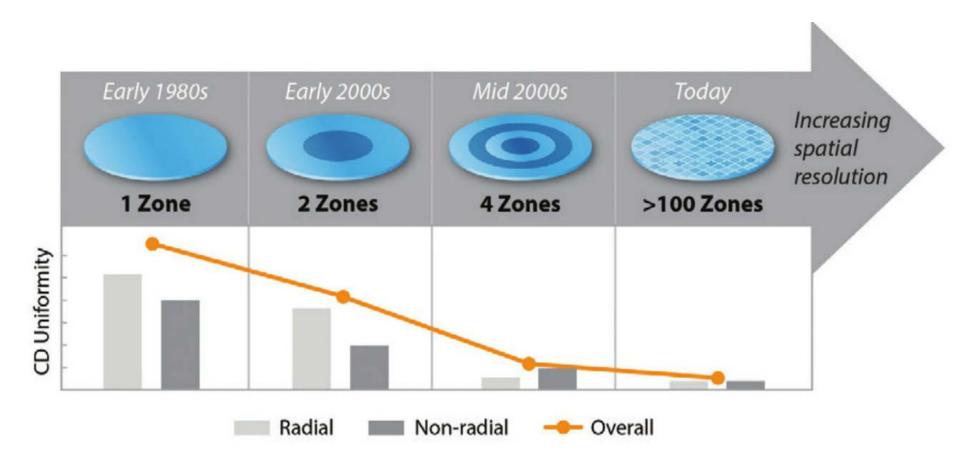
<u>Dick de Roover</u>, Abbas Emami-Naeini, Narasimha Acharya, Jon L. Ebert, La Moyne Porter II

> SC Solutions, Inc. 1261 Oakmead Pkwy Sunnyvale, CA 94085

Email: roover@scsolutions.com

APC Conference XXVIII 2016
Phoenix, AZ
Oct. 17-20, 2016

Overview


- Multi-zone Heated Plates
- Model-based Tuning Approach
- Simulation Results
 - o Radial & Azimuthal non-uniform profiles
 - o Effect of Measurement Points
 - o Effect of Measurement Noise
- ☐ Summary & Conclusions

Multi-zone Heated Plates

- ☐ Heated Plates play an important role in many processes in the Semiconductor industry
 - o Plasma etch
 - o CVD
 - o Post-Exposure Bake (Track)
 - o And others ...
- Controlling plate temperature uniformity has become increasingly important
 - Plate temperature uniformity has a direct impact on wafer temperature uniformity and corresponding yield
 - Over the years, the number of plate actuators and sensors has increased to allow for finer and more uniform temperature control and tuning
- ☐ As a result, plate temperature control and corresponding temperature offset tuning have become increasingly complex

A systematic tuning approach is needed

Evolution of Multi-zone Heated Plates

Source: Solid State Technology, July 2016, Vol. 59, No. 5

Overview

- Multi-zone Heated Plates
- Model-based Tuning Approach
- Simulation Results
 - o Radial & Azimuthal non-uniform profiles
 - o Effect of Measurement Points
 - o Effect of Measurement Noise
- Summary & Conclusions

Model-Based Tuning Approach

- A Model-Based Tuning (MBT) approach has been developed
 - o Based on accurate heat transfer models of multi-zone plates
 - Models are integrated with state-of-the-art constrained optimization methods
 - o The result is a systematic data-driven tuning method providing optimal uniformity
 - o This tuning method provides a custom solution for each unique plate
- ☐ For this research, four different plate models were developed:
 - o 5-zone axi-symmetric plate

○ 64-zone plate

o **33-zone plate**

- 133-zone plate
- ☐ The following fab-realistic simulations were performed for each plate:
 - Different initial non-uniform profiles (radial, azimuthal non-uniformity)
 - Different number of measurement points (temperature vs. CD)
 - Different noise conditions
- Performance plots are shown for each case

Contact

Full Presentation is part of the APC 2016 proceedings.

Please contact SC Solutions if you would like to receive a full copy of this presentation.

Dick de Roover roover@scsolutions.com

