
Physics-informed Machine Learning for Control 
− DNN in a Dynamic Feedback Loop  
This Case Study describes an approach to combining physical principles with Machine Learning (ML) for 

modeling and control of complex systems. Our approach was developed as part of a DARPA-funded 

research project. It was applied to oil reservoir management. While this Case Study provides an overview, 

technical details may be found in a separate publication [1]. 

Background 

A physical process may be considered as a change in the state of a system with time − driven by physical 

phenomena that are internal or external to the system. Physicists and engineers attempt to model these 

processes employing conservation laws supplemented by phenomenological relationships. The resulting 

models are generally expressed as time-dependent partial differential equations that are often coupled 

and non-linear. The solution to these equations, with appropriate initial and boundary conditions applied, 

describe the physical process. This physics-based paradigm has continued to be the primary approach for 

modeling complex physical systems ranging from chemical micro reactors to planetary climate. 

However, simulations with such first-principles, high-fidelity models tend to be computationally intensive, 

and do not run in real-time. Hence, these models cannot be used in many real-world applications such as 

process control or tracking propagation of forest fires.  

Over the past few decades, techniques have been developed to generate low-order models from high-

fidelity models that enable simulations to be run in real-time or faster. These dynamic fast models attempt 

to accurately model the key physical state variables of interest while sacrificing accuracy on other state 

variables of less importance. Such fast low-order models may be developed mathematically e.g., proper 

orthogonal decomposition (POD), or developed using simplified physics that also judiciously reduce the 

number of states through aggregation. However, these fast models often cannot account for disturbances 

and process drifts. Additionally, the effect of unmodeled physics (left unmodeled intentionally or 

unintentionally) may be significant, including model parameters that may change often with time. 

With the proliferation of a wide range of sensors and the consequent availability of vast amount of data, 

this physical modeling paradigm is being challenged by the data-driven machine learning (ML) paradigm. 

For example, deep neural networks (DNN) are used in lieu of physics-based models because they can use 

these data to make comparably accurate predictions.  

In its simplest definition, DNN’s are computational models consisting of a large number of processing 

layers designed to accurately map the input data to the output data as shown in the figure below. Each 

layer consists of several neurons, with each neuron connected to other neurons in the preceding and 

succeeding layers. The DNNs are trained to incorporate complex underlying relationships between the 

inputs and outputs in a manner that mimics operation of the human brain. In mathematical terms, training 

a neural network for a specific problem involves solving an optimization problem where the objective 
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(cost function) is minimized to find the optimal set of parameters, which happen to be the weights to the 

inputs to the neurons in each layer of the network.  

 

The choice of the number of hidden layers and the number of artificial neurons in each layer are design 

parameters that are problem dependent and are presently determined mostly by trial and error. DNNs 

employ multiple hidden layers (typically more than three) to capture all the relationships between the 

input and output layers. The output of an artificial neuron, y, in each layer is the value of a transfer 

function, called activation function, whose argument is the sum of the neuron’s n inputs where each input, 

xi, has a weight ai, and an additional bias term, bi, as shown below: 

𝒚 =  𝒇(𝒛);  𝒛 =  ∑ 𝒂𝒊𝒙𝒊

𝒏

𝒊
+ 𝒃 .    

Although DNNs have shown promising results in a wide range of applications, they require large amounts 

of data for training and are prone to overfitting, making them ineffective in unfamiliar or challenging 

situations outside the training dataset. An ML model will likely fail if it is applied outside the training space, 

especially if the system has changed with time. By training space, we are referring to the range of values 

of inputs and parameters of the system that was spanned when the data was acquired for training the ML 

model. The reason for failure is that the ML model’s non-linear approximations of the actual physics may 

be very inaccurate on extrapolation. Even within the training space, a ML model may not produce accurate 

predictions when the training dataset is not sufficiently rich, i.e., the dataset despite being large in size 

has not adequately resolved the parameter or input space. 

An alternative approach is to use both physics-based models and data-driven ML techniques in a 

complementary way that leverages the strengths of both approaches. A successful form of this approach, 

often referred to as physics-informed (or physics-infused) machine learning (PIML), would produce 

accurate simulation results by accommodating some unmodeled physics (e.g., system property variations 

in time), while showing robustness outside the training space.  

Many PIML techniques have been developed that incorporate physics-based constraints and empirical 

prior knowledge (e.g., spatial symmetry), or a mix of both in designing and training the DNN [2][4]. As 

described below, SC’s approach is a variation on this technique that uses simulation results generated 

from fast physics-based models to train the DNN. We incorporate physics-based constraints into the DNN 

design, and uses the DNN to control the system in a dynamic feedback loop. 
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PIML Implemented with DNN in a Dynamic Feedback Loop 
for Control 

In our approach, prior knowledge in the form of physics-based models has been incorporated in the ML 

model both in the construction of the DNN as well as in the latter’s training.  

We have used an autoencoder architecture for the DNN as shown in the figure below. The autoencoder 

employs a narrowing of the intermediate (hidden) layers between the input and output layers of the DNN. 

This bottleneck in the network forces a compression of the information in the original input vector (using 

the encoder part of the network), 𝒙, followed by a subsequent reconstruction (using the decoder part of 

the network) to obtain the DNN output, 𝒙̂. This compressed representation of the inputs is denoted by Z, 

and may be considered as a latent variable that is associated with 𝒙 and can reduce the dimensionality of 

the input data [5]. 

 

We note that the input, 𝒙, of the autoencoder DNN does not necessarily correspond to the inputs of the 

model or to the physical system. It may include any combination of measurements, model inputs (e.g., 

voltage or heat flux), model outputs (e.g., velocity or temperature), and model parameters (e.g., mass, 

heat capacity), even though they are related to each other. In ML, descriptors such as velocity, mass, etc., 

are referred to input data labels and the data is characterized as a labeled dataset.  

An ML model is said to undergo supervised learning when the model is trained using a labelled dataset to 

determine the mapping function to map the inputs to the outputs. In contrast, unsupervised learning 

occurs when the model itself finds the hidden patterns from the supplied dataset using techniques such 

as clustering, rule-based association, and dimensionality reduction. Since autoencoders do not need 

explicit labels for training they may be trained using an unsupervised learning technique. 

In training the DNN, we determine the values of these weights and biases such that a specific loss function 

is minimized. The process involves constructing the “loss function”, which is the objective or cost function 

that is minimized in the optimization problem. A typical loss function for autoencoder consists of a 

reconstruction loss that encourages the model to be sensitive to the inputs and a regularizer that 

discourages memorization or overfitting. 
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The loss function for our application was defined as shown in the equation below. Here, the first two 

terms are the reconstruction loss of the input data and its time derivatives respectively.  The third term, 

the physics-based regularizer, has its origin in the physics-based model and constrains the space of 

admissible solutions for the weights by imposing symmetry, invariance, or conservation principles 

originating from the physical laws that govern the system as described below. These terms may be scaled 

with the parameters 𝜆1 and 𝜆2 to control the trade-off between the three goals. 

 

The DNN design reflects our intent to use the PIML model for model-based control (MBC) as shown in the 

figure below. The controller uses the same fast, physics-based model that is used in the DNN. The trained 

DNN used in such a dynamic feedback loop (DFL) employing effective control algorithms can achieve 

robustness to system variations and uncertainty, reduction of response to noise and disturbances, and 

optimality of the dynamic response. 

The accuracy of such models for dynamic systems may often degrade over time because of physical (and 

chemical) changes that are reflected in the changing values of the model parameters. It would be desirable 

to be able to dynamically update these model parameters in the MBC. As we described earlier, our 

autoencoder architecture has new estimates of the parameters as part of the DNN output. These updated 

parameter estimates, 𝜽̂, are used by the controller.  

 

When the estimated parameters fall outside a user-specified range, the DNN would need to be retrained 

offline. Both model simulation results and measurements are used for the retaining. Use of measurements 

in training data attempts to compensate for model inaccuracy both as a result of approximations in the 

lower-order fast model as well as for some unmodeled physics. In the next section, we describe how this 

approach was used in oil reservoir management. 
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Application to Oil Reservoir Management  

This PIML approach was developed in the DARPA program, Physics of Artificial Intelligence (PAI), in which 

SC partnered with NeoTek Energy. A predictive analytical tool for oil reservoir management was 

developed based on the PIML approach. The tool was used in the dynamic feedback loop (DFL) described 

earlier to optimize operational parameters such as choke valve settings and injection rates. The 

optimization goal was to reach specific target metrics of production, e.g., maximizing oil production while 

minimizing the associated (but unwanted) by-products such as natural gas. The effectiveness of the DFL 

was demonstrated in the field tests performed in the Yates field. 

Oil and gas reservoirs may be considered as complex dynamical physical systems interacting with their 

external environment through a set of wells that serve as inputs and outputs to the system, i.e., through 

the wellbores that connect to the oil reservoir. The system is non-linear, and its dynamic behavior is time 

varying. Examples of inputs are fluid injections (flow rates of injected species) and wellhead choke valve 

settings (pressure and/or flow rate control), while outputs are production rates of oil, water, and gas.  

A high-fidelity physical model of this complex system involves a large number of time-varying parameters, 

whose values have significant uncertainties. Consequently, predictions of such a model may have limited 

accuracy making it difficult to use these predictions for optimal reservoir management. Hence, for 

optimizing production, the oil industry has generally relied on heuristics, expert knowledge, and 

experience. 

As described in the previous section, the DFL control system consists of an autoencoder-type DNN that 

extracts physics-based parameters from the real-time measurements and updates the relevant 

parameters that are fed to the model-based controller. As shown in the figure below, in existing field 

operation, a set of control inputs (uP0) is selected, based on expertise and best estimates from existing 

data. Typically, these inputs are left unchanged for a specified period before repeating the process. 

However, in our approach, the optimal set of controls (uP) are continuously adjusted based on the DNN’s 

prediction of key parameters (𝛩̂) from the production data (q) as shown in the figure below. 

 

We developed a fast, low-order, physics-based model of a reservoir with multiple wells that combined the 

capacitance-resistance model from the literature [6] that incorporates inter-well connectivity, and our 

original coning model to simulate flow at individual wells [1]. This multi-well reservoir model was 

calibrated and validated with the historical production data of the three pilot wells in the Yates field. 
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Results from model simulation were then used to train the DNNs to estimate the changes in the key 

parameters of oil reservoir using data from NeoTek’s real-time sensors installed on each monitored well 

(GORA Analyzer).  

The controller was developed to maximize the cumulative amount of oil produced over time, penalized 

by the total amount of gas and/or water that also came out of the wells over the same time period. The 

controller generates a set of actuator inputs (choke valve settings) for a specified time horizon based on 

the parameters estimated by the trained DNN, in a manner similar to model predictive control.  

We compared the oil production between the open-loop control representing the current field operation 

and the DFL scheme in simulation using the three-well reservoir model. The results are shown in the figure 

below where the blue lines represent the open-loop system, and the red lines represent the system with 

the DFL. The simulation results predict that the use of DFL would result in an increase in the cumulative 

annual oil production of 34.7%. 

 

The DFL was field-tested in the Yate’s field. For the field test, three GORA sensor systems were deployed 

on the three pilot wells in the Yate’s field. Action-reaction experiments (‘bump tests’) were designed and 

conducted to identify the physical model parameters for the pilot wells to identify the nominal model 

parameters for use in the DNN training.  

Comparison of Oil Production

34.7% Increase



 

In the field test, the controller periodically generated a set of inputs (choke valve settings) based on the 

outputs of the DNNs, which in turn was supplied with real-time measurements from the GORA Analyzers. 

The time horizon was about a week. The operator in the field subsequently implemented these new 

settings. The average profit rate with the recommended choke settings was compared with the previous 

year’s data as shown in the figure below. With the recommended settings applied, the average profit rate 

was increased by 27.9% over the same period of the previous year. The technical approach, including the 

formulation of the physics model and the DNN training, is explained in greater detail in paper that is 

available at this link [1]. 

 

Benefits 

Physics-infused Machine Learning (PIML) attempts to embed physics and prior knowledge into machine 

learning that helps overcome the challenges of sparse data and facilitate the development of predictive 

models for complex processes that are causal and physically meaningful. Such an approach can be useful 

in many applications including model-based control, virtual sensing, design of next-generation equipment, 

troubleshooting, and process optimization.  If you would like more information regarding use of PIML-

Average profit rate in 2019

Average profit rate during the field test
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based model development for potential application to your system, please contact us at (408) 617 4525, 

or fill in the contact form given below. 
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