DOE NPH Meeting

Fluid-Soil-Structure Interaction Analysis of Tank for Seismic Evaluation of Nozzle Subjected to Differential Movement

October 23, 2018
Problem Statement

• Seismically qualified critical storage tanks

• Nonlinear anchor response

• Founded on soft soil with stiffness reversals
DNFSB concern:

– Over-restrained pipe-tank connection

– SAM-induced stress at connection
Previous Analysis

Max soil displacement + allowable anchor elongation

\[\Delta_{\text{demand}} = \Delta_{\text{rocking}} + \varepsilon_{\text{allow}} \cdot l_{\text{bolt}} \]

induced on tank end of system

Concluded nozzle significantly overloaded
Assess functionality (pressure retention) of tank and draw-off piping connection during and after DBE

Phase 1: Determine if detailed analysis can address concern

Phase 2: Perform final analysis and documentation to full code and QA requirements for support of safety basis
Acceptance Criteria

• No failure of tank shell at piping connection
 – API 650 moment capacity
 – AWWA allowable stress

• No failure of draw-off piping at connection
 – ASME B31E

• No local tank failure caused by anchor behavior
 – SQUG GIP 3A
 – Elongation limit ~1%
Global System Model
Soil Model

- Equivalent linear properties
- Visco-elastic material model
- 400x400x500 ft. soil domain
- Single soil profile
- Single time history
- Lysmer damper
Fluid-Structure Model

- Tank shell elements (w/ beam elements)
- Fluid continuum elements
- Lagrangian fluid model
- Fluid constrained w/in tank:
 - Horizontally along wall
 - Vertically across base
Nonlinear Anchor Model

- Nut
- Free
- Tension-only spring
- Elastic-plastic anchor
- Contact surface
Nonlinear Anchor Response

Anchor Axial Force

Anchor Elongation
Model Verification

• Site response analysis deconvolution
• Finite element soil model site response
• Fluid model static and modal response
• Nonlinear anchor behavior
• Nozzle response due to uplift
• System behavior in sensitivity studies
Response at Maximum Nozzle Stress

5x magnification, with fluid
Response at Maximum Nozzle Stress

50x magnification, without fluid
System Response
Nozzle demands driven by:

- Fluid convection
- Fluid stress (impulse)
- Tank rocking and uplift
- Local tank – nozzle deformation
Nozzle demands driven by:

- Fluid convection
- Fluid stress (impulse)
- Tank rocking and uplift
- Local tank – nozzle deformation
Nozzle demands driven by:

- Fluid convection
- Fluid stress (impulse)
- Tank rocking and uplift
- Local tank – nozzle deformation
Nozzle demands driven by:

- Fluid convection
- Fluid stress (impulse)
- Tank rocking and uplift
- Local tank – nozzle deformation
Tank Dynamic Response

Forces at Tank Wall

Axial-driven
Uplift-driven
axial+uplift driven

Time, s
Force / Moment

Nozzle demand
Axial response
Uplift response
1. Tank rocking and uplift contribution weaker than anticipated

2. Local tank longitudinal differential displacement observed

3. Overall maximum stress due to combined behavior
Sensitivity Studies

Purpose: Confirm behavior, inform Phase 2

Varied Parameters:

- Stiff anchors
- Reduced water height
- 1st pipe support removed
- Longitudinal support removed
- Time history variability
Benefits of Detailed Analysis

- Nozzle moments roughly 1/3
- Reduced tank displacement due to SSI rocking effect
- Combined FSI-SSI-nonlinear anchor response explicitly captured
- Local tank deformation a result of combined system response vs. imposed boundary conditions
Project Conclusion

- Functionality controlled by tank shell stress
- Anchor strain close to recommended limit
- Tank experienced minor overstress
 - ~10% above yield stress, half of tensile stress

Detailed analysis likely to address concern given acceptability of minor overstress
Questions?