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The Shapes of Nyquist Plots
Connections with Classical Plane Curves
ABBAS EMAMI-NAEINI

he Nyquist criterion is a valuable design tool with

applications to control systems and circuits [1], [2].

In this article, we show that many Nyquist plots are
classical plane curves. Surprisingly, this connection seems
to have gone unnoticed. We determine the precise shapes
of several Nyquist curves and relate them to the shapes of
the classical plane curves. Some classical plane curves are
related to exactly proper or improper loop transfer func-
tions, which do not roll off at high frequencies and thus
are not physical.

Classical plane curves are used for robustness analysis
in [3]. In addition, the area enclosed by the Nyquist curve
is related to the Hilbert-Schmidt-Hankel norm of a linear
system [4]. Therefore, knowledge of the precise shape of the
Nyquist curve can provide additional useful information
about the properties of a system.

The organization of this article is as follows. We first
give a brief history of plane curves and then describe
various plane curves. We then state some results that
relate Nyquist plots to plane curves and present vari-
ous illustrative examples. We end with some conclud-
ing remarks.

PLANE CURVES

Plane algebraic curves have been studied for more than
2000 years with applications to architecture, astronomy,
and the arts [5]-[10]. Straight lines and circles were defined
in antiquity, by Thales around 600 B.C., with applications
to architecture. The classical mathematical problems in
antiquity include the determination of p, the trisection
of an angle, and the Delian problem, which concerns the
amount that the side length of a cube needs to be increased
to double its volume. All three problems are related to
plane curves.

The cissoid of Diocles and the conchoid of Nicomedes
were studied around 180 B.C. The Greeks used the cis-
soid of Diocles to attempt to solve the problem of trisect-
ing an angle. The cissoid is the most ancient example of
a curve with a cusp singularity. Conchoids were used in
the construction of vertical columns, which are common
in Greek, Roman, and Persian architecture. The discov-
ery of conic sections in 350 B.C. resulted in the study of
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the intersection of cones with planes. Ellipses, parabolas,
and hyperbolas were constructed around 150 B.C.
by Menaechmus.

After a long intermission, starting with Durer in 1525
and for the following 300 years during the Renaissance,
there was tremendous interest in plane curves by the
eminent mathematicians of the day, including Bernoulli,
Euler, Huygens, Newton, Descartes, and Pascal. Kepler
tried a variety of curves before settling on the ellipse as
the best fit to the shape of planetary orbits. The inven-
tion of calculus in the second half of the 17th century had
a strong influence on the study of curves. For example,
the nephroid was shown by Huygens to be the solution
to a classical optical problem, namely, it is the catacaus-
tic of parallel light rays falling on a circle [10]. In 1696,
Bernoulli posed a minimum-time optimal control prob-
lem whose solution, given the next day by Newton,
is the brachistochrone, which is a section of a cycloid
curve [11]. In mechanics, plane curves were applied to
the design of gears and motors [10]. James Watt inves-
tigated Watt’s curve, which is produced by a linkage of
rods connecting two wheels of steam locomotives. Lis-
sajous patterns were discovered in 1850 by the French
physicist J.A. Lissajous with applications to electrical
engineering and vibrations. The development of ana-
lytic and descriptive geometry in Europe was acceler-
ated during the mid-19th century. Descartes led the
investigation of curves in the complex projective plane.
T.J. Freeth, an English mathematician, published a paper
on strophoids in 1879.

Cardioid

The name cardioid, which means heart shaped, was used
by de Castillon in Philosophical Transactions of the Royal
Society in 1741 to refer to the curve shown in Figure 1
[6]1, [7]. The cardioid is given in polar coordinates by

r52all 1 cosul. @)

To express (1) in Cartesian coordinates we use the
relations

x5rcosu, y5rsinu, )
rs = x21y? (3)
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FIGURE 1 Plot of the cardioid with the polar equation r 5 2al11 cos ul.
The name cardioid, which means heart shaped, was first used by
de Castillon in Philosophical Transactions of the Royal Society in
1741. This curve has a cusp at the origin.

u 5tan21a§b, x 2 0. @)
We rewrite (1) in the form
r22acosub?2a. (5)

Multiplying both sides of (5) by r and squaring both sides
of the resulting equation and using (2)—(4) yields the quar-
tic equation

X2 1 y? 2 2ax2? 5 4a%1x? 1 y?L. (6)
The area enclosed by the cardioid is [7]
A5 6pa. ©)

Limacgon

The limagon, whose name means snail in French from the
Latin word limax, was first investigated by Durer in 1525,
who gave a method for drawing the curve [6], [7]. The
curve was rediscovered by Etienne Pascal, father of Blaise
Pascal, and named by Gilles-Personne Roberval in 1650.
This curve, which is shown in Figure 2, is described by the
polar equation

r52acosulb. (8)

For details, see “Dad, That Is a Limagon.” If |2a] = |b], then
the limagon becomes a cardioid. If '2a' , 'b!, then the lima-
¢on has an inner loop. At points on the inner loop corre-
sponding to the values 1208 < u < 2408 r becomes negative.
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FIGURE 2 Plot of the limagon with the polar equationr 5 2acosu 1 b.
The limagon, which means “snail” in French and from the Latin
limax, was first investigated by Durer in 1525.

Note that [5] in polar coordinates the point (r, u), where r <0,
denotes the point (Jr], u + p). The size of the inner loop
decreases as '2a/b' decreases. If '2al , b/, then the lima-
con has no inner loop. For 1/2 , '2a/b' , 1, the limacon’s
cusp is smoothed and becomes a dimple. The limacon loses
its dimple when '2a/b' 51/2.

To express the limagon in Cartesian coordinates, we
multiply both sides of (8) by r and rearrange terms to obtain

r22 2arcosu 5 br. 9)

By squaring both sides of (9) and using (2)-(4) we obtain

1?1 y? 2 2ax1? 5 b%1x? L y?L. (10)
The area enclosed by the limagon is given by [7]
12a2 1. b?p, b $ 2a,

. b3
AS 122 1 blap 2 005! b 1 0"*4a20% b , 2a

1)

Dad, That Is a Limagon
was drawing the curve in Figure 2 on our home computer.
My 17-year-old son looked over my shoulder and said: “Dad,
that is a limagon.” | was very surprised and asked: “How do
you know?” He said, “Oh, we plotted that two years ago in
my sophomore trigonometry class.” | knew right then that this
article had to be written!
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Trisectrix
he combination of a compass and a straightedge cannot
be used to trisect an arbitrary angle. However, a form of the
limacon can be used to trisect an angle. If a = b in (10), then
the curve shown in Figure S1 is called a trisectrix and satisfies
/0OAB5 11/32/ABC. Therefore, it can be used to trisect an
angle.
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FIGURE S1 lllustration of the trisectrix plane curve. A trisectrix
is a special limagon that can be used to trisect an angle. The
trisectrix of Maclaurin can also be used to trisect an angle as
shown in Figure S3.

FIGURE 3 Plot of the cissoid of Diocles with the polar equation
r 5 2a lsin?u/cos u?. This curve, which means ivy shaped, has
the asymptote x 5 a and a single cusp.

If a = b, then the limagon is called a trisectrix, which can be
used to trisect an angle. For details, see “Trisectrix.”

Cissoid of Diocles

The cissoid of Diocles is named after the Greek math-
ematician Diocles who used it in 180 B.C. to solve the
Delian problem mentioned above. A cissoid of Diocles,
whose name means ivy shaped, is an unbounded plane
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curve with a single cusp that is symmetric about the line
of tangency of the cusp as shown in Figure 3 [6], [7]. The
pair of symmetric branches approach the same asymp-
tote but from opposite directions. The polar equation is
given by

sin®u

. 12
cos u (12)

To express the cissoid of Diocles in Cartesian coordi-
nates, we rewrite (12) as
y2
rs2a—. (13)
Xr
Multiplying both sides of (13) by r and substituting from
(2)-(4) yields

x*5 2y?la1 x!. (14)

The cissoid of Diocles has the asymptote x = a.

Strophoid

The strophoid, investigated by Barrow in 1670, is the plane
curve shown in Figure 4. The word “strophoid” means
a belt with a twist. The strophoid is given by the polar
equation

r5alcos 2ulsec u. (15)
To derive the Cartesian form of (15), rewrite (15) as
r5al2cos?u 2 12sec u. (16)

Squaring both sides of (16) and substituting from (2)—(4)
yields

az2x
alx

y? 5 x? a7

The strophoid has an asymptote given by x 5 2a.

Cayley’s Sextic

Cayley’s sextic was discovered by Maclaurin in 1718 but
studied in detail by Cayley [7]. This curve, which is shown
in Figure 5, is described by the polar equation

u
r5 4acos® 3 (18)
To derive the Cartesian form, we first rewrite (18) as
cosu 1 3cos 3
rS54aa—— (19)

4

Multiplying both sides of (19) by r and rearranging yields

u
r22 ar cos u’5 3ar cos 3 (20)
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Cubing both sides of (20) and using (2)-(4) and (18)
leads to

41x2 1 y? 2 ax1® 5 27a%1x% 1 y?12. (21
Folium of Kepler
The folium of Kepler studied by Kepler in 1609 is the leaf-
shaped plane curve with the polar equation

r5 lcos ulldasin®u 2 bl. (22)
To express (22) in Cartesian coordinates, we use (2)—(4)
to obtain
y2

rs §a4aF 2 bb. (23)
Multiplying both sides of (23) by r and again using (2)—(4)
leads to

Ix? 1 y223xix 1 b2 1 y?4 2 daxy? 5 0. (24)

If b $ 4a, the curve has only one folium or leaf. Otherwise,
the curve has more than one leaf. Figure 6 shows Kepler’s
folium forthecasea5 1 and b 5 4.

Nephroid
The nephroid, meaning kidney shaped, was studied by Huy-
gens in 1678. This shape is described by the polar equation

1
r’s §a215 2 3cos 2u?, (25)

which has two cusps. In Cartesian variables, the nephroid
is described by

u 3u
x5 aa3cos > 2 cos 7b, (26)

u 3u u
y5aa3sin§25in 7b 54asin35. 27)

Cubing both sides of (25) and using (26)—(27) and (2)-(4)
yields

Ix?21y? 2 4a%1% 2 108a'y?* 5 0. (28)
Figure 7 illustrates the nephroid fora 5 1.

Nephroid of Freeth
The nephroid of Freeth, which is shown in Figure 8, is
described by the polar equation

r5aa1123in%b, a.o. (29)

Rearranging the terms in (29) and squaring both sides
yields

Ir 2 al? 5 2a211 2 cos ul. (30)

FIGURE 4 Plot of the strophoid with the polar equation r 5
2alcos 2ulsec u. This curve, which means shaped like a belt with
a twist, was investigated by Barrow in 1670.
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FIGURE 5 Plot of Cayley’s sextic with the polar equation r 5 4a cos®
lu/32. This curve, which resembles a shifted limagon, was discov-
ered by Maclaurin in 1718, but studied in detail by Cayley.

Expanding the left-hand side, rearranging, and multiply-
ing both sides of (30) by r leads to

rir?2 a%! 5 2alr? 2 ax?. (3D)

Now squaring both sides of (31) and using (2)—(4) leads to
IX21yAIx21y?2a212 2 4221x2 1 y? 2 ax2250. (32)

This curve is distinct from the nephroid.

Shifted Plane Curves

Shifted versions of plane curves can be obtained by replac-

ing x and y by x 2 x5 and y 2 y,, respectively. For example,
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FIGURE 6 Plot of the folium of Kepler with the polar equation
r 5 lcosull4a sinu2b!. The folium of Kepler, which means leaf
shaped, was studied by Kepler in 1609.
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FIGURE 7 Plot of the nephroid with the polar equation is r? 5
11/22 a®15 2 3cos ul. The nephroid, which means kidney shaped,
was studied by Huygens in 1678. This curve has two cusps.
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FIGURE 8 Plot of the nephroid of Freeth with the polar equation
r5alll2sinlu/22. This curve was studied in 1879 by the
English mathematician T.J. Freeth.

106 IEEE CONTROL SYSTEMS MAGAZINE > OCTOBER 2009

the Cartesian equation for the shifted nephroid of Freeth
(32) is given by

Lx 2 %002 1 1y 2'y,12211x 2 x,12 1 1y 2 yy2? 2 3202
24221Ix 2 x,22 1 ly 2 y,1?2 2 alx 2 x,2225 0. (33)

NYQUIST CURVES
In this section, we relate the shapes of various Nyquist plots
to the plane curves presented in the previous section.

Theorem 1
Consider the second-order loop transfer function

1

LIl ————,
Is1alls1 b?

(34)

wherea - 0and b - 0. Then the Nyquist plot of L(s) is the
cardioid

1 1
x*1yt2 £x3 1 2x%y? 2 —xy? 2

b 22y2 50. (35)

1
ablalb

Proof
Forv _ 0ands5jv, we have

1
v ialjv bl
1
VPV
1
NV Lat b

2 jsinlu;lv? 1 u,lv2ll,

LIjvI5

e2j1u11v21u21v22

lcosluylv? A u,lvl?

where
\% v
ulv?s tan21agb, ulv? s tan21a6b,

which leads to the relation

v,V
y a b lal blv
=5 2tanlu;lvi 1 u,lvlls 2 52 >
X A% ab2v
12—
ab
(36)

Rewriting (36) as the quadratic equation
vy 2 lal blxv 2aby50

yields

lal blx 6 ""lal b2 1 4aby?
2y '

v5

@7
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Furthermore, we have that

lal blv

RelLljv2?5x5 2 . (38
) 12vi1abZiviialpE OO
Substituting (37) into (38) yields (35). u
Example 1: Cardioid
Consider the loop transfer function [2]
Lis? 5# (39)
ls112%

It follows from Theorem 1 that the Nyquist plot of L(s) is a
cardioid. In polar coordinates we have that

rivls

1
2 5-111 cos 2ulv?l,
vill 2

where the Nyquist plot is shown in Figure 9 with the cusp
point at the origin. The Cartesian equation is given by

1.2 1
ax21y22§xb 5zlx21y22. (40)

Theorem 2
Consider the proper second-order system with the loop
transfer function with imaginary zeros given by

@ 2 @
N o ®

=
(V)

T
i
|
I
|
I
i
|
I
i
|
I
|

Imaginary Axis
o

oL
2 =2 =
o » N

-0.8 :
PRL I O LR Y
Real Axis

FIGURE 9 The Nyquist plot for the second-order loop transfer
function LI1s? 51/1s 1 122 The right-half plane is mapped into
the inside of the cardioid. The polar equation is rlv250.511 1
cos 2ulv?2?, and the Cartesian equation is 1x* 1y*2 0.5x2?5
0.251x% 1 y?2.

Proof
For s = jv, we have the equation at the bottom of the page
where

v v
ulv2 5tan?*a—b, u,lv?5tan?'a—b.
a b

Furthermore,

y 2lal blv
) =5 2tanlu vl L ulvil 5 ————— (43)
Lis! 5 s°1g @) X 12abv
Is1alls1 b?’
Solving (43) for v yields
where a >0, b >0, and g > 0. Then the Nyquist plot of L(s)
is the limagon lal blx 6 ""lal b2 1 4aby?
v5 2ab . (44)
1b%1 b 12b%x* 11g22b22 b*2b 2 gh?22ghlx*1 y
12by? 1 2b%? 1 4b%? 1 gb?12gb 1 gix* 1 Furthermore, we have the relations
12gy? 2 bPy? 2 2b?%? 2 2gby? 2 gb%y? 2 by?Ix 1
2
b%* 1 by* 2 b%y?1 2b%* 2 g?%?1 2gby?50. V15 1y’ 5 2 12v°1g! , (45)
42) v2la?""vilb?
4 N\
2viilg
Ljvis———F7—
WESTv L atljv 1 be
12\/2 1 gz e2j1u11v21u21v22
"rvila?Ttvil b? 0 .
>V, 0
5riviicosiulv? 1 u,lv?? 2 jsinlu vl 1L u,lvi2?,
S5
12\/2 1 gz e2j1u11v21u21v22p2
"rvila?Ttvil b? v ..6
5rivii2cosiu;lv? 1 u,lv2? 1 jsinlu;lv? 1 u,lv22l,
- J
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FIGURE 10 The Nyquist plot for the second-order loop transfer
function Lls? 5 1s?132/1s 1 122 This limagon has the polar
equation rlv251 1 cos2ulv?, and the Cartesian equation
Ix21y?222x1°5x21y2

12v21.gll2v?1 ab?
12v?1 ab??1 lal blav?

RellLljv2!5x5 (46)

Substituting for v from (44) in (45) results in the polyno-
mial Cartesian equation (42), which is the limagon. h

Example 2: Limagon
Consider the exactly proper [13] loop transfer function

213

Lis? 5 .
ls 1122

(47)

It follows from Theorem 2 that the Nyquist plot of L(s) is a
limacon. In polar coordinates we obtain

2v?13

rivis—; 511 cos2ulvl.
vell

The Nyquist plot is shown in Figure 10 with the cusp point
at the origin. The Cartesian equation is

IX1Ly?22x225 x> 1y (48)

Theorem 3
Consider the second-order Type | loop transfer function

Lis! 5 (49)

sls1a?’

where a ? 0. Then the Nyquist plot of L(s) is the cissoid
of Diocles

1
x5 2y2a¥ 1 xb. (50)
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Proof
We first consider the case a > 0. For s = jv, we have

Lijvis—
jvijv 1 al
1
v vila®
1

v v?la®

2j aElulVZb
2

1 2sinulv? 2jcosulviy,

where

ax

\% X \%
ulvl!5tan?a—b, —5tanulvi5— v5—. (51
a y a
Furthermore, we have
r1v25"x21y25 2—— (52)
v v?la?
Substituting for v from (51) in (52) results in (50).
We now consider the case a < 0. For s = jv, we have
Lijvis —————
. jvijv 1 al?
1 2ja3£2u1v?b
5————%; .
v " v?ila?
1
——————12sinulv? 1 jcos ulvl,
v 'v?ila®
where
\% X \% ax
ulvl?5tan?a—h, -52tanulvi52— v52—
a y a y
(53)
which leads to
rivl s "leyZSt. (54)
v v?1la?
Substituting for v from (53) into (54) yields (50). h
Example 3: Cissoid of Diocles
Consider the loop transfer function
L1s? 5# (55)
sls1.12°

It follows from Theorem 3 that the Nyquist plot of L(s) is a
cissoid of Diocles. In polar coordinates we have

1 = 1 cos?ulv?
vI11v2Y2 tanulv?il 1 tanZulv?22” sinulvl’

rlvis
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The Nyquist plot is shown in Figure 11, and the corresponding
Cartesian equation is

X5 y21 2 x2. (56)
Example 4: Cissoid of Diocles
for an Improper System
Consider the improper loop transfer function
SZ
Lis?5 TEY (57)
Fors5jvandv _ 0, we have
2v? 2v? ‘
L1j ) 2julv?
WIS v

5riviicosulv? 2 jsinulvil,
In polar coordinates, we obtain

2v?

WS 2sinulv?tan ulv?.

rivls

Furthermore, we have

%5 2tanulv?.

The Nyquist plot is the cissoid of Diocles shown in Fig-
ure 12. The Cartesian equation is

X5 2y211 1 x2. (58)

Theorem 4
Consider the third-order Type I loop transfer function

1

LIsl5 —————,
sls1 alls1 b?

where a - 0, b - 0. Then the Nyquist plot of L(s) is the
shifted strophoid

3a’by* 1 2a’bx* 1 5a%bx?y? 1 ax%y? 1 a’y* 1 béy* 1
a‘b?® 1 2ab®* 1 3ab?* 1 5ab’?? 1 a?bxy* 1
2a%b*x%? 1 a*b’xy* 1 x® 1 2a®bxy* 1 4a’b’x®y? 1
2a*b>Cy? 1 a?b*x® 1 bPy*x® 1 2a°b’x° 5 0.
(59)

Proof
Fors5jvandv _ 0, we have

1
Lljvl5
WESTvijv L atijv 1 bl
5 1 2it B 1uviLuve

v ivila?v?il b?

1
VT v?la?t"vi1b?
2 jcoslu,lv? 1 u,lviil,

12sinluylv? 1 u,lv2?

where
21 Vv 21 v
u;lv? 5tan agb, u,lv?5tan aBb. (60)
Moreover, we have
v,V
X a b ladl blv
—5tanlulv? 1 u,lvil 5 - (61
y VvV  ab2v
12—
ab
We rearrange (61) to obtain
xv?1 lal blyv 2 abx50, (62)

Imaginary Axis

NO DN o0 b X > v > O
Ve /Q. /0. /0. /Q. /0. /0. /Q. /0. /Q.

Real Axis

FIGURE 11 The Nyquist plot for the second-order Type | loop transfer
function Lls? 51/3sls 1 124 This curve, which is a cissoid of
Diocles has an asymptote at 21. The polar equation is rlv? 5
cos® Ulv/sin ulv?, and Cartesian equation is x* 5y 2 112x1.

Imaginary Axis

NO DN o0 b X > A2 D O
7 /Q. /0. /Q. /Q. /0. /0. /Q. /0. /0.

Real Axis

FIGURE 12 The Nyquist plot for the first-order improper loop trans-
fer function Lls? 5s?/1s 1 12. This curve, which is a cissoid of
Diocles, has an asymptote at 21. The polar equation is rlv? 5
21sin vitan v, and the Cartesian equation is x> 5 2y?11 1 x2.
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whose solution is

2lal bly 6 ""lal bl%?1 4abx?

5 63
v ™ (63)
We also see that
PRV 1
rivis5 " x*1y*5 2 —————— (64)
virvila’tviib?
Substituting for v from (63) into (64) yields (59). h
Example 5: Shifted Strophoid
Consider the loop transfer function [2]
LIsl5——0. 65
sls 1 122 (65)

It follows from Theorem 4 that the Nyquist plot of L(s) is the
shifted strophoid. The polar equation is

1 11 cos2ulv?
vil1wv? 2tan ulv?

rivls

The Nyquist plot is shown in Figure 13, and the correspond-
ing Cartesian equation is

Ay*x 1 8x%? 1 12x%y? 1 8y* 1 4x° 1 4x* 1 x°50. (66)
Example 6: “Shifted Strophoid”
Consider the loop transfer function [2]
11
Lis! 5 3‘57 (67)
—21
sa10 b

FIGURE 13 The Nyquist plot for the third-order Type | loop transfer
function L1s? 51/1sls 11224, This curve which is a shifted strophoid
has an asymptote at 22 . The polar equationis r v 5111 cos 2ulv2l/
12 tan ulv?2 andthe Cartesian equation is 4y “x 1 8x %2 1 12x%2 1
8y*14x°14x*1x350.
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Fors=jvand v >0, we have

101jv 112 _ 1011 1 v22%/?
jvljv 2102 vil1v?
5rilviisinlu;lvl 2 u,lv?? 2 jeosluylvl 2 u,lvill,

. P
2]au11v22u21v?2?b

Lijv?5

where
u;lv? 5atan2lv, 17, u,lv? 5 atan2lv,2102.

Note that the Matlab function atan2 is needed to correctly
compute the arctangent. For details see “Which Quadrant
Are We In?” In polar coordinates, we have

1011 1 v311/2
vil1v?

1011 1 tan?u,lv 2212

rivls .
tan u,1v21100 1 tan?u, lv 222

In addition, we see that

RelLljv2? 5x5rlvisinlulvl 2 u,lvi,
ImiLljv22 5y 5 2rlvicoslu,lv? 2 u,lvie,

which implies that

X
;5 2tanlu,lv? 2 u,lvil,

The Nyquist plot is the “shifted strophoid” shown in Fig-
ure 14. The Cartesian equation is

12100x* 1. 36300x%y? 2 53240x*y? 1. 36300x*y* 1. 12100x%y°

2 43681x%y* 1.12100x%y? 214641y® 1.12100x8 2 24200%° 50.
(68)

Im(L)

FIGURE 14 The Nyquist plot for the second-order loop transfer
function Lls? 5 1s1 12/3s10.1s 2124 This curve, which is a
“shifted strophoid,” has an asymptote at 21.1. The polar equation is
riv? 51011 1 tan? u;1v2295 /itan u, v 21100 1 tan? u, v 22054,
and the Cartesian equation is (68).
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Which Quadrant Are We In?

he classic trigonometric function arctangent tan2?, referred

to as atan in Matlab, may give the wrong answer for the
phase of the complex quantity z5 x 1 jy. In particular, the
Matlab computation phi 5 atanly/x? may give the wrong an-
swer if the signs of the real and imaginary parts x and y are
used to form the sign for the ratio y/x of the imaginary part
and the real part. In this way, the information on the proper
quadrant may be lost. Therefore, we must keep the signs of the
real x and the imaginary y parts separate so that the correct
quadrant can be identified to yield the right answer as seen
in Figure S2. One of the jewels in Matlab is the four-quadrant
arctangent function phi = atan24y, x8, 2p # phi # p. The
function atan2 in Matlab identifies the correct quadrant by
keeping track of the signs of x and y to yield the correct an-
swer for the inverse tangent.

Although the shape of the Nyquist curve resembles a
shifted strophoid, this example does not satisfy the defini-
tion of a shifted strophoid.

Example 7: Strophoid
Consider the improper loop transfer function

1s21 121s 112

Lis?5 P
12s

(69)
Fors5jvand v _ 0, we have

112valjv 112 112v2211:|_v221/26jLIl
11V2 11\/2
5rivlicosulv? 2 jsinulv??,

v2

LijvI5

where

112 v2211 1 v21?

112 5cos 2ulviseculv?,

rivl 5
Moreover, we have
XS tan ulv?.
X

The Nyquist plot is the strophoid shown in Figure 15.
The Cartesian equation is

- 112 x2x? (70)
y 11x
Example 8: Cayley’s Sextic
Consider the loop transfer function
Lis? 5# (71)
ls112%

FIGURE S2 lllustration of the four-quadrant arctangent. The
function atan2 in Matlab is needed to obtain the correct phase
angle in arctangent computations.

Fors5jvand v _ 0, we have

2j3ulv?

1
LijvI5
VoS Tv a1 Y ve 1 12

5riviicos 3ulv?? 2 jsin 3ulvil,
The polar equation is

1
rivls 5cos3u1v25213003 ulv?adcos3ulvil,

1
1211232
Moreover, we have

%5 2tan 3ulv?.

The Nyquist plot is the Cayley’s sextic with a5 1/4 shown
in Figure 16. The Cartesian equation is

5-4-3-2-10 1 2 3 4
Re(L)

FIGURE 15 The Nyquist plot for the improper second-order loop
transfer function Lls? 51s?1 121s 1 12/11 2 s?2. This curve,
which is a strophoid has an asymptote at 21. The polar equation
is rlvl 5 lcos 2ulv2l sec ulv?, and the Cartesian equation is
y25x2112x2/111x12.
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FIGURE 16 The Nyquist plot for the third-order loop transfer
function Lls? 51/1s 1 123, This curve, which is a Cayley’s
sextic, has the polar equation rlv250.2513cosulv? 1
riv?50.2513cos ulv? 1cos 3ulvll, and the Cartesian equa-
tion 41x21y?20.25x2°2127/1621x*1y?1? 5 0.

27
dax®*1y*2 xb 2 6lx 1y%250. (72)
Example 9: Folium of Kepler
Consider the loop transfer function
Lis? 5; (73)
Is2121s 1 12%

Fors5jvand v _ 0, we have

1
ljv 2 121jv 1122
1
5—— ¢
11 1V223/2
5rlviicoslu;lv? 1 2u,lv2l 2 jsinluylv? 1 2u,lv22l,

Lijv?5

2jluylvi12u,lv2

where

ulv? 5atan2lv, 212, u,lvl5atan2lv,1?,

and

2v 5tanulvl, v 5tanu,lvl.

Therefore, we have
ulv2s 2u,lve.
In polar coordinates we obtain

1

111 tan?u,lv22%2
5cos u;lv2lsin?u,lv2 212,

rivls
11 1 v2237?

which implies that

%5 2tan u,lvl 5 2v.
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FIGURE 17 The Nyquist plot for the third-order loop transfer
function L1s? 51/31s 2 121s 1 1224, This curve, which is the
folium of Kepler has the polar equation rlv? 5 lcos u,lv2
1sin? u,1v221?, and the Cartesian equation x?1y?2¥x Ix 2121
y# 1 xy?50.

The Nyquist plot is the folium of Kepler shown in Figure 17.
The Cartesian equation is
IX*Ly?2ixIx 212 1y 1 xy*50. (74)

Example 10: Nephroid
Consider the exactly proper [13] loop transfer function

L1525215112152245112 3ls112 _ls112® 75)
ls212° Is212 " 1s212%
Fors5jvandv _ 0,
3jv 112 ljv 1128
LijvIs d
ljiv212 " ljv 2128

5sej1u1'.v22p1u21vzz 2 ej13ullv22p13uzlv22

5312cos 2u,lv12jsin 2u,lv 1l
2 12cos 6u;lv22jsin 6u,lv?,

where

ulv? 5tan?lv?, v 5tanu;lv?,
u,lv2 5tan?tlv?, v 5tan u,lve.

Furthermore, we see that
RelLljv2? 5 x5 23cos 2u,1v? 1 cos 6u,lv?,
ImILIjv2? 5y 5 23sin 2u,lv? 1 sin 6u,lv?,

which leads to the relation

X _ 23cos 2u;lv? 1 cos 6u,lv?

y  23sin 2u,lv? 1 sin 6u,lv?’
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FIGURE 18 The Nyquist plot for the third-order loop transfer
function L1s? 521s1121s224s 112/1s212° This curve, which
is a nephroid has the Cartesian equation Ix21y?242°2108y250.

The Nyquist plot is the nephroid shown in Figure 18. The
Cartesian equation is

Ix21y2241°2108y?50. (76)
Example 11: Nephroid of Freeth
Consider the exactly proper loop transfer function
1s 1 121s? 1 32
LIl ——— 77)

41s2 128
For s 5 jv we have

ljv 1121 2v?1 32

Lljv?5
) Aljv 2178
erlv212cos4u1v22jsin 4ulv?l, 0, v , ""3,
2rlvilicos 4ulv?l 1 jsin 4ulv?l, v . "3
where
111va212v2131 _12v?132
rivls 2
411 1 w232 411 1 v??
ulv? 5tan?'v?, v 5tan ulvl,
Furthermore, we obtain the relations
2rlvicos4ulv?, 0, v , *"3
RellLljvl?!B5x5 ' g > =
eV x> e 2rlvicos 4ulv?, v - "3
2rlvisindulv?, 0, v , ""3
ImiLljvil5y5 ) ' > > _ 9
) YOS € orivisinautvy, v . U3,

which lead to

%Stan qulvl.

0.8 :
0.6 ‘
0.4
0.2

0 ,,,,,,

-0.2

-0.4

-0.6

-08

Imaginary Axis

-1 -0.8 -0.6 -04 -0.2 O
Real Axis

02 04

FIGURE 19 The Nyquist plot of the third-order loop transfer func-
tion with a pair of zeros on the jv axis L1s! 51s1121s21.32/
341s 21234, This curve, which is a nephroid of Freeth has the
Cartesian equation given by (78).

The Nyquist plot is the nephroid of Freeth with a51/4
shown in Figure 19. The Cartesian equation is

1.2_1 1.2
1x21y22ax21y225b Zzaleyzzsz 50. (78)

Example 12: Shifted Nephroid of Freeth
Consider the strictly proper loop transfer function

11

Lis!5 . 79

¥ 21 (79)
For s 5jv, we have
2vi11
Lijvis S =
ljv 212

2rlvilcos 3ulv? 1 jsin 3ulv?l, 0, v , 1

€oriviicos3ulv? 1jsin3ulvil, v . 1.

In polar coordinates we have

2vi11

W5COS ulvlcos 2ulv?.
Vv

rivls

Moreover, we observe that

2rlvicos3ulv?, 0,v , 1

ILLjv22 ' z o
RelLljvitSx5Se 2rlvicos 3ulvy, v -1,

2rlvisin3ulv?, 0, v , 1

ImliLljvll5y5 . ' o
) Y € orivisinauivy, v .1

which implies that
%5 tan 3ulv?.

The Nyquist plot is the shifted nephroid of Freeth shown in
Figure 20. The Cartesian equation is

OCTOBER 2009 « |EEE CONTROL SYSTEMS MAGAZINE 113

Authorized licensed use limited to: Abbas Emami-Naeini. Downloaded on October 23, 2009 at 13:23 from IEEE Xplore. Restrictions apply.



0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8

-1 -0.8 -0.6 0.4 -02 0
Real Axis

Imaginary Axis

02 04

FIGURE 20 The Nyquist plot for the third-order loop transfer func-
tion with a pair of zeros on the jv axis L1s? 5 1s? 1 12/1s 2 113,
This curve, which is a shifted nephroid of Freeth has the Cartesian
equation given by (80).

Root Locus and the Plane Curves
lane curves also appear in the root locus problems [12].
For example, the root locus associated with [2, Ex. 5.13,
p. 255] with the loop transfer function

sl1

LIs!l5————
S s?ls 192

is the trisectrix of Maclaurin [7] shown in Figure S3. The curve
was first studied by the Scottish mathematician C. Maclaurin
in 1742. The root locus associated with [2, Ex. 6.11, p. 255]
resembles a limagon.

Imaginary Axis

-4+ ) ) ) ) ) ) ) ) ) 0 4
-10 -9 8 -7 6 -5 -4 -3 -2 -1 0 1
Real Axis

FIGURE S3 lllustration of the root locus shaped as a trisectrix.
This root locus is the plane curve known as the trisectrix of
Maclaurin.
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1?2 1?2 1 2
1-b 1y? 1-b 1y?2-—
aax 4b y“baax 4b y 16b

2£aax1£b21 2Ziaxllbb250 (80)
4 e '

CONCLUSIONS

We have shown that the shapes of many Nyquist plots are
identical to familiar and well-studied plane curves. This
observation can provide additional insight into the shapes
of Nyquist plots. Knowing the shape of the Nyquist plot can
also provide additional useful information about the system
beyond stability. Table 1 shows a summary of the examples
and the corresponding shapes of the Nyquist plots. Some
plane curves, such as the folium of Descartes [7], are not
symmetric with respect to the horizontal axis, and thus are
not related to Nyquist curves. Plane curves also appear in
root locus problems. For details, see “Root Locus and the
Plane Curves.” Many other examples of the Nyquist plots
that are related to plane curves can be constructed using the
techniques discussed here.
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