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The Shapes of Nyquist Plots
Connections with Classical Plane Curves

The Nyquist criterion is a valuable design tool with 

applications to control systems and circuits [1], [2]. 

In this article, we show that many Nyquist plots are 

classical plane curves. Surprisingly, this connection seems 

to have gone unnoticed. We determine the precise shapes 

of several Nyquist curves and relate them to the shapes of 

the classical plane curves. Some classical plane curves are 

related to exactly proper or improper loop transfer func-

tions, which do not roll off at high frequencies and thus 

are not physical. 

Classical plane curves are used for robustness analysis 

in [3]. In addition, the area enclosed by the Nyquist curve 

is related to the Hilbert-Schmidt-Hankel norm of a linear 

system [4]. Therefore, knowledge of the precise shape of the 

Nyquist curve can provide additional useful information 

about the properties of a system. 

The organization of this article is as follows. We first 

give a brief history of plane curves and then describe 

various plane curves. We then state some results that 

relate Nyquist plots to plane curves and present vari-

ous illustrative examples. We end with some conclud-

ing remarks. 

PLANE CURVES 
Plane algebraic curves have been studied for more than 

2000 years with applications to architecture, astronomy, 

and the arts [5]–[10]. Straight lines and circles were defined 

in antiquity, by Thales around 600 B.C., with applications 

to architecture. The classical mathematical problems in 

antiquity include the determination of p, the trisection 

of an angle, and the Delian problem, which concerns the 

amount that the side length of a cube needs to be increased 

to double its volume. All three problems are related to 

plane curves. 

The cissoid of Diocles and the conchoid of Nicomedes 

were studied around 180 B.C. The Greeks used the cis-

soid of Diocles to attempt to solve the problem of trisect-

ing an angle. The cissoid is the most ancient example of 

a curve with a cusp singularity. Conchoids were used in 

the construction of vertical columns, which are common 

in Greek, Roman, and Persian architecture. The discov-

ery of conic sections in 350 B.C. resulted in the study of 

the intersection of cones with planes. Ellipses,  parabolas, 

and hyperbolas were constructed around 150 B.C. 

by Menaechmus. 

After a long intermission, starting with Dürer in 1525 

and for the following 300 years during the Renaissance, 

there was tremendous interest in plane curves by the 

eminent mathematicians of the day, including Bernoulli, 

Euler, Huygens, Newton, Descartes, and Pascal. Kepler 

tried a variety of curves before settling on the ellipse as 

the best fit to the shape of planetary orbits. The inven-

tion of calculus in the second half of the 17th century had 

a strong influence on the study of curves. For example, 

the nephroid was shown by Huygens to be the solution 

to a classical optical problem, namely, it is the catacaus-

tic of parallel light rays falling on a circle [10]. In 1696, 

Bernoulli posed a minimum-time optimal control prob-

lem whose solution, given the next day by Newton, 

is the brachistochrone, which is a section of a cycloid 

curve [11]. In mechanics, plane curves were applied to 

the design of gears and motors [10]. James Watt inves-

tigated Watt’s curve, which is produced by a linkage of 

rods connecting two wheels of steam locomotives. Lis-

sajous patterns were discovered in 1850 by the French 

physicist J.A. Lissajous with applications to electrical 

engineering and vibrations. The development of ana-

lytic and descriptive geometry in Europe was acceler-

ated during the mid-19th century. Descartes led the 

investigation of curves in the complex projective plane. 

T.J. Freeth, an English mathematician, published a paper 

on strophoids in 1879. 

Cardioid 
The name cardioid, which means heart shaped, was used 

by de Castillon in Philosophical Transactions of the Royal 
Society in 1741 to refer to the curve shown in Figure  1 

[6], [7]. The cardioid is given in polar coordinates by 

 r 5 2a 11 1 cos u 2 . (1) 

To express (1) in Cartesian coordinates we use the 

relations 

 x 5 rcos u,  y 5 rsin u,  (2) 

 r 5 "x2 1 y2,  (3) 

ABBAS EMAMI-NAEINI

Authorized licensed use limited to: Abbas Emami-Naeini. Downloaded on October 23, 2009 at 13:23 from IEEE Xplore.  Restrictions apply. 



OCTOBER 2009 « IEEE CONTROL SYSTEMS MAGAZINE 103

 u 5 tan21ay

x
b,  x 2 0. (4) 

We rewrite (1) in the form 

 r 2 2a cos u 5 2a. (5) 

Multiplying both sides of (5) by r and squaring both sides 

of the resulting equation and using (2)–(4) yields the quar-

tic equation 

 1x2 1 y2 2 2ax 2 2 5 4a2 1x2 1 y2 2 . (6) 

The area enclosed by the cardioid is [7] 

 A 5 6pa2.  (7)

Limaçon 
The limaçon, whose name means snail in French from the 

Latin word limax, was first investigated by Dürer in 1525, 

who gave a method for drawing the curve [6], [7]. The 

curve was rediscovered by Étienne Pascal, father of Blaise 

Pascal, and named by Gilles-Personne Roberval in 1650. 

This curve, which is shown in Figure 2, is described by the 

polar equation 

 r 5 2a cos u 1 b. (8) 

For details, see “Dad, That Is a Limaçon.” If |2a| = |b|, then 

the limaçon becomes a cardioid. If 0 2a 0 , 0 b 0 , then the lima-

çon has an inner loop. At points on the inner loop corre-

sponding to the values 1208 < u < 2408, r becomes negative. 

Note that [5] in polar coordinates the point (r, u), where r < 0, 

denotes the point (|r|, u + p). The size of the inner loop 

decreases as 0 2a/b 0  decreases. If 0 2a 0 , 0 b 0 , then the lima-

çon has no inner loop. For 1/2 , 0 2a/b 0 , 1, the limaçon’s 

cusp is smoothed and becomes a dimple. The limaçon loses 

its dimple when 0 2a/b 0 5 1/2. 

To express the limaçon in Cartesian coordinates, we 

 multiply both sides of (8) by r and rearrange terms to obtain 

 r2 2 2ar cos u 5 br. (9) 

By squaring both sides of (9) and using (2)–(4) we obtain 

 1x2 1 y2 2 2ax 2 2 5 b2 1x2 1 y2 2 . (10) 

The area enclosed by the limaçon is given by [7] 

A 5 • 12a2 1 b2 2p,   b $ 2a, 

12a2 1 b2 2 ap 2 cos21 
b
2a

b 1
3

2
b"4a2 2 b2,   b , 2a.

  

 (11)

FIGURE 1 Plot of the cardioid with the polar equation r 5 2a 111cos u2 . 
The name cardioid, which means heart shaped, was first used by 

de Castillon in Philosophical Transactions of the Royal Society in 

1741. This curve has a cusp at the origin.
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FIGURE 2 Plot of the limaçon with the polar equation r 5 2a cos u 1 b. 

The limaçon, which means “snail” in French and from the Latin 

limax, was first investigated by Dürer in 1525.
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Dad, That Is a Limaçon 

I was drawing the curve in Figure 2 on our home computer. 

My 17-year-old son looked over my shoulder and said: “Dad, 

that is a limaçon.” I was very surprised and asked: “How do 

you know?” He said, “Oh, we plotted that two years ago in 

my sophomore trigonometry class.” I knew right then that this 

article had to be written! 
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If a = b, then the limaçon is called a trisectrix, which can be 

used to trisect an angle. For details, see “Trisectrix.” 

Cissoid of Diocles 
The cissoid of Diocles is named after the Greek math-

ematician Diocles who used it in 180 B.C. to solve the 

Delian problem mentioned above. A cissoid of Diocles, 

whose name means ivy shaped, is an unbounded plane 

curve with a single cusp that is symmetric about the line 

of tangency of the cusp as shown in Figure 3 [6], [7]. The 

pair of symmetric branches approach the same asymp-

tote but from opposite directions. The polar equation is 

given by 

 r 5 2a
sin2 u

cos u
. (12) 

To express the cissoid of Diocles in Cartesian coordi-

nates, we rewrite (12) as 

 r 5 2a
y2

xr
. (13) 

Multiplying both sides of (13) by r and substituting from 

(2)–(4) yields 

 x3 5 2y2 1a 1 x 2 . (14) 

The cissoid of Diocles has the asymptote x = a. 

Strophoid 
The strophoid, investigated by Barrow in 1670, is the plane 

curve shown in Figure 4. The word “strophoid” means 

a belt with a twist. The strophoid is given by the polar 

equation 

 r 5 a 1cos 2u 2sec u. (15) 

To derive the Cartesian form of (15), rewrite (15) as 

 r 5 a 12cos2 u 2 1 2sec u. (16) 

Squaring both sides of (16) and substituting from (2)–(4) 

yields 

 y2 5 x2 
a 2 x
a 1 x

. (17) 

The strophoid has an asymptote given by x 5 2a.

Cayley’s Sextic 
Cayley’s sextic was discovered by Maclaurin in 1718 but 

studied in detail by Cayley [7]. This curve, which is shown 

in Figure 5, is described by the polar equation 

 r 5 4a cos3 
u

3
. (18) 

To derive the Cartesian form, we first rewrite (18) as 

 r 5 4aacos u 1 3cos u3

4
b. (19) 

Multiplying both sides of (19) by r and rearranging yields 

 r2 2 ar cos u 5 3ar cos 
u

3
. (20) 

Trisectrix

The combination of a compass and a straightedge cannot 

be used to trisect an arbitrary angle. However, a form of the 

limaçon can be used to trisect an angle. If a = b in (10), then 

the curve shown in Figure S1 is called a trisectrix and satisfies 

/OAB 5 11/3 2 /ABC. Therefore, it can be used to trisect an 

angle. 
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FIGURE S1 Illustration of the trisectrix plane curve. A trisectrix 

is a special limaçon that can be used to trisect an angle. The 

trisectrix of Maclaurin can also be used to trisect an angle as 

shown in Figure S3. 

FIGURE 3 Plot of the cissoid of Diocles with the polar equation 

r 5 2a 1sin2 u/cos u 2 . This curve, which means ivy shaped, has 

the asymptote x 5 a and a single cusp.
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Cubing both sides of (20) and using (2)–(4) and (18) 

leads to 

 4 1x2 1 y2 2 ax 2 3 5 27a2 1x2 1 y2 2 2. (21) 

Folium of Kepler 
The folium of Kepler studied by Kepler in 1609 is the leaf-

shaped plane curve with the polar equation 

 r 5 1cos u 2 14a sin2 u 2 b 2 . (22) 

To express (22) in Cartesian coordinates, we use (2)–(4) 

to obtain 

 r 5
x
r

a4a
y2

r2
2 bb. (23) 

Multiplying both sides of (23) by r and again using (2)–(4) 

leads to 

 1x2 1 y2 2 3x 1x 1 b 2 1 y2 4 2 4axy2 5 0. (24) 

If b $ 4a, the curve has only one folium or leaf. Otherwise, 

the curve has more than one leaf. Figure 6 shows Kepler’s 

folium for the case a 5 1 and b 5 4.

Nephroid 
The nephroid, meaning kidney shaped, was studied by Huy-

gens in 1678. This shape is described by the polar equation 

 r2 5
1

2
a2 15 2 3cos 2u 2 ,  (25) 

which has two cusps. In Cartesian variables, the nephroid 

is described by 

 x 5 aa3cos 
u

2
2 cos 

3u

2
b,  (26) 

 y 5 aa3 sin 
u

2
2 sin 

3u

2
b 5 4a sin3 

u

2
. (27) 

Cubing both sides of (25) and using (26)–(27) and (2)–(4) 

yields 

 1x2 1 y2 2 4a2 2 3 2 108a4y2 5 0. (28) 

Figure 7 illustrates the nephroid for a 5 1.

Nephroid of Freeth 
The nephroid of Freeth, which is shown in Figure 8, is 

described by the polar equation 

 r 5 aa1 1 2 sin 
u

2
b,   a . 0. (29) 

Rearranging the terms in (29) and squaring both sides 

yields 

 1r 2 a 2 2 5 2a2 11 2 cos u 2 . (30) 

Expanding the left-hand side, rearranging, and multiply-

ing both sides of (30) by r leads to 

 r 1r2 2 a2 2 5 2a 1r2 2 ax 2 . (31) 

Now squaring both sides of (31) and using (2)–(4) leads to 

 1x2 1 y2 2 1x2 1 y2 2 a2 2 2 2 4a2 1x2 1 y2 2 ax 2 2 5 0. (32) 

This curve is distinct from the nephroid. 

Shifted Plane Curves 
Shifted versions of plane curves can be obtained by replac-

ing x and y by x 2 x0 and y 2 y0, respectively. For example, 

FIGURE 4 Plot of the strophoid with the polar equation r 5 

2a 1cos 2u 2sec u. This curve, which means shaped like a belt with 

a twist, was investigated by Barrow in 1670.

FIGURE 5 Plot of Cayley’s sextic with the polar equation r 5 4a cos31u/3 2 . This curve, which resembles a shifted limaçon, was discov-

ered by Maclaurin in 1718, but studied in detail by Cayley.
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the Cartesian equation for the shifted nephroid of Freeth 

(32) is given by 

 1 1x 2 x0 2 2 1 1y 2 y0 2 2 2 1 1x 2 x0 2 2 1 1y 2 y0 2 2 2 a2 2 2

 2 4a2 1 1x 2 x0 2 2 1 1y 2 y0 2 2 2 a 1x 2 x0 2 2 2 5 0. (33) 

NYQUIST CURVES 
In this section, we relate the shapes of various Nyquist plots 

to the plane curves presented in the previous section. 

Theorem 1

Consider the second-order loop transfer function 

 L 1s 2 5
11s 1 a 2 1s 1 b 2 ,  (34) 

where a . 0 and b . 0. Then the Nyquist plot of L(s) is the 

cardioid 

 x4 1 y4 2
1

ab
x3 1 2x2y2 2

1

ab
xy2 2

1

ab 1a 1 b 2 2
y2 5 0. (35) 

Proof

For v . 0 and s 5 jv , we have

 L 1 jv2 5
11 jv 1 a 2 1 jv 1 b 2

 5
1"v2 1 a2"v2 1 b2

 e2j1u11v21u21v22 
 5

1"v2 1 a2"v2 1 b2
1cos 1u1 1v 2 1 u2 1v 2 2

 2 j sin 1u1 1v 2 1 u2 1v 2 2 2 ,
where 

 u1 1v 2 5 tan21av

a
b,   u2 1v 2 5 tan21av

b
b,  

which leads to the relation 

y

x
5 2tan 1u1 1v 2 1 u2 1v 2 2 5 2

v

a
1

v

b

1 2
v

a

v

b

5 2
1a 1 b 2v
ab 2 v2

.

 (36) 

Rewriting (36) as the quadratic equation 

 v2y 2 1a 1 b 2xv 2 aby 5 0 

yields 

 v 5
1a 1 b 2x 6 "1a 1 b 2 2x2 1 4aby2

2y
. (37) 

FIGURE 7 Plot of the nephroid with the polar equation is r  2 5 11/2 2  a2 15 2 3cos u 2 . The nephroid, which means kidney shaped, 

was studied by Huygens in 1678. This curve has two cusps.

1

1.5

2

30

210

60

240

90

270

120

300

150

330

0180

0.5

FIGURE 8 Plot of the nephroid of Freeth with the polar equation 

r 5 a 11 1 2sin 1 u/2 2 2 . This curve was studied in 1879 by the 

English mathematician T.J. Freeth.
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FIGURE 6 Plot of the folium of Kepler with the polar equation 

r 5 1cos u 2 14a sin2 u2b 2 . The folium of Kepler, which means leaf 

shaped, was studied by Kepler in 1609.
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Furthermore, we have that 

 Re 1L 1 jv 2 2 5 x 5 2
1a 1 b 2v12v2 1 ab 2 2 1 v2 1a 1 b 2 2

. (38) 

Substituting (37) into (38) yields (35).  u

Example 1: Cardioid 
Consider the loop transfer function [2] 

 L 1s 2 5
11s 1 1 2 2

. (39) 

It follows from Theorem 1 that the Nyquist plot of L(s) is a 

cardioid. In polar coordinates we have that 

 r 1v 2 5
1

v2 1 1
5

1

2
11 1 cos 2u 1v 2 2 ,  

where the Nyquist plot is shown in Figure 9 with the cusp 

point at the origin. The Cartesian equation is given by 

 ax2 1 y2 2
1

2
xb2

5
1

4
1x2 1 y2 2 . (40) 

 ■

Theorem 2

Consider the proper second-order system with the loop 

transfer function with imaginary zeros given by 

 L 1s 2 5
s2 1 g1s 1 a 2 1s 1 b 2 ,  (41) 

where a > 0, b > 0,  and g > 0. Then the Nyquist plot of L(s) 

is the limaçon 

1b31 b 12b22x4 1 1g22b22 b32b2gb222gb2x3112by2 1 2b3y2 1 4b2y2 1 gb2 1 2gb 1 g 2x2 1  12gy2 2 b3y2 2 2b2y2 2 2gby2 2 gb2y2 2 by2 2x 1

b3y4 1 by4 2 b2y2 1 2b2y4 2 g2y2 1 2gby2 5 0.

 (42) 

Proof

For s = jv, we have the equation at the bottom of the page 

where 

u1 1v 2 5 tan21av

a
b,   u2 1v 2 5 tan21av

b
b.

Furthermore, 

 
y

x
5 2tan 1u1 1v 2 1 u2 1v 2 2 5

2 1a 1 b 2v
1 2 abv2

. (43) 

Solving (43) for v yields

 v 5
1a 1 b 2x 6 "1a 1 b 2 2x2 1 4aby2

2aby
. (44) 

Furthermore, we have the relations 

 r 1v 2 5 "x2 1 y2 5 2
12v2 1 g 2"v2 1 a2"v2 1 b2

,  (45) 

FIGURE 9 The Nyquist plot for the second-order loop transfer 

func tion L 1s 2 5 1/ 1s 1 1 2 2. The right-half plane is mapped into 

the inside of the cardioid. The polar equation is r 1v 2 5 0.5 11 1  

cos 2u 1v 2 2 , and the Cartesian equation is 1x2 1 y2 2 0.5x 2 2 5 

0.25 1x2 1 y2 2 . 
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 L 1 jv 2 5
2v2 1 g1 jv 1 a 2 1 jv 1 b 2

 
12v2 1 g 2"v2 1 a2 "v2 1 b2

 e2j 1u11v21u21v22

5 { 5 r 1v 2 1cos 1u1 1v 2 1 u2 1v 2 2 2 jsin 1u1 1v 2 1 u2 1v 2 2 2 , 0 , v , "g,

 
12v2 1 g 2"v2 1 a2 "v2 1 b2

 e2j 1u11v21u21v22p2

 5 r 1v 2 12cos 1u1 1v 2 1 u2 1v 2 2 1 jsin 1u1 1v 2 1 u2 1v 2 2 2 , v . "g,
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 Re 1L 1 jv 2 2 5 x 5
12v2 1 g 2 12v2 1 ab 212v2 1 ab 2 2 1 1a 1 b 2 2v2

. (46) 

Substituting for v from (44) in (45) results in the polyno-

mial Cartesian equation (42), which is the limaçon.  h

Example 2: Limaçon 
Consider the exactly proper [13] loop transfer function 

 L 1s 2 5
s2 1 31s 1 1 2 2

. (47) 

It follows from Theorem 2 that the Nyquist plot of L(s) is a 

limaçon. In polar coordinates we obtain 

 r 1v 2 5
2v2 1 3

v2 1 1
5 1 1 cos 2u 1v 2 . 

The Nyquist plot is shown in Figure 10 with the cusp point 

at the origin. The Cartesian equation is 

 1x2 1 y2 2 2x 2 2 5 x2 1 y2. (48) 

 ■

Theorem 3

Consider the second-order Type I loop transfer function 

 L 1s 2 5
1

s 1s 1 a 2 ,  (49) 

where a ? 0. Then the Nyquist plot of L(s) is the cissoid 

of Diocles 

 x3 5 2y2a 1

a2
1 xb. (50) 

Proof

We first consider the case a > 0. For s = jv, we have 

 L 1 jv 2 5
1

jv 1 jv 1 a 2
 5

1

v"v2 1 a2
e2jap

2
1u1v2b

 5
1

v"v2 1 a2
1 2sin u 1v 2 2 jcos u 1v 2 2 , 

where 

  u 1v 2 5 tan21av

a
b,   

x
y

5 tan u 1v 2 5
v

a
,   v 5

ax
y

. (51) 

Furthermore, we have 

 r 1v 2 5 "x2 1 y2 5 2
1

v"v2 1 a2
. (52) 

Substituting for v from (51) in (52) results in (50). 

We now consider the case a < 0. For s = jv, we have 

 L 1 jv 2 5
1

jv 1 jv 1 a 2
 5

1

v"v2 1 a2
e2j a3p

2
2u1v2b.

 5
1

v"v2 1 a2
12sin u 1v 2 1 jcos u 1v 2 2 ,

where 

u 1v 2 5 tan21av

a
b,   

x
y

5 2tan u 1v 2 5 2
v

a
,   v 5 2

ax
y

, 

 (53) 

which leads to 

 r 1v 2 5 "x2 1 y2 5
1

v"v2 1 a2
. (54) 

Substituting for v from (53) into (54) yields (50).  h

Example 3: Cissoid of Diocles 
Consider the loop transfer function 

 L 1s 2 5
1

s 1s 1 1 2 . (55) 

It follows from Theorem 3 that the Nyquist plot of L(s)  is a 

cissoid of Diocles. In polar coordinates we have 

r 1v 2 5 1

v 11 1 v2 2 1/2
5

1

tan u 1v 2 11 1 tan2 u 1v 2 2 1/2
5

cos2 u 1v 2
sin u 1v 2 . 

FIGURE 10 The Nyquist plot for the second-order loop transfer 

function L 1s 2 5 1s2 1 3 2/ 1s 1 1 2 2. This limaçon has the polar 

equation r 1v 2 5 1 1 cos 2u 1v 2 , and the Cartesian equation 1x 
2 1 y 

2 2 2x 2 2 5 x 
2 1 y 

2. 
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The Nyquist plot is shown in Figure 11, and the corresponding 

Cartesian equation is 

 x3 5 y2 11 2 x 2 . (56) 

 ■

Example 4: Cissoid of Diocles 
for an Improper System 
Consider the improper loop transfer function 

 L 1s 2 5
s2

s 1 1
. (57) 

For s 5 jv  and v . 0, we have 

 L 1 jv 2 5
2v2

jv 1 1
5

2v211 1 v2 2 1/2
e2ju1v2

 5 r 1v 2 1cos u 1v 2 2 jsin u 1v 2 2 . 
In polar coordinates, we obtain 

 r 1v 2 5
2v 211 1 v 2 2 1/2

5 2sin u 1v 2  tan u 1v 2 .
Furthermore, we have 

 
y

x
5 2tan u 1v 2 . 

The Nyquist plot is the cissoid of Diocles shown in Fig-

ure 12. The Cartesian equation is 

 x3 5 2y2 11 1 x 2 . (58) 

 ■

Theorem 4

Consider the third-order Type I loop transfer function 

 L 1s 2 5
1

s 1s 1 a 2 1s 1 b 2 ,

where a . 0, b . 0. Then the Nyquist plot of L(s) is the 

shifted strophoid 

3a2by4 1 2a2bx4 1 5a2bx2y2 1 a3x2y2 1 a3y4 1 b3y4 1

a4b2x5 1 2ab2x4 1 3ab2y4 1 5ab2x2y2 1 a2b4xy4 1

2a2b4x3y2 1 a4b2xy4 1 x3 1 2a3b3xy4 1 4a3b3x3y2 1

2a4b2x3y2 1 a2b4x5 1 b3y2x2 1 2a3b3x5 5 0.

 (59) 

Proof

For s 5 jv  and v . 0, we have 

 L 1 jv 2 5
1

jv 1 jv 1 a 2 1 jv 1 b 2
 5

1

v"v2 1 a2"v2 1 b2
 e2j 1 p21u11v21u21v22

 
5

1

v"v21a2"v21b2
12sin 1u1 1v 2 1 u2 1v 2 2

 2 jcos 1u1 1v 2 1 u2 1v 2 2 2 ,
where 

 u1 1v 2 5 tan21av

a
b,  u2 1v 2 5 tan21av

b
b. (60) 

Moreover, we have 

 
x
y

5 tan 1u1 1v 2 1 u2 1v 2 2 5

v

a
1

v

b

1 2
v

a

v

b

5
1a 1 b 2v
ab 2 v2

. (61) 

We rearrange (61) to obtain 

 xv2 1 1a 1 b 2yv 2 abx 5 0, (62) 

FIGURE 11 The Nyquist plot for the second-order Type I loop transfer 

function L 1s 2 5 1/ 3s 1s 1 1 2 4. This curve, which is a cissoid of 

Diocles has an asymptote at 21. The polar equation is r 1v 2  5
 cos2 u 1v2/sin u 1v2 , and Cartesian equation is x 

3 5y 
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FIGURE 12 The Nyquist plot for the first-order improper loop trans-

fer function L 1s 2 5 s 
2/1s 1 1 2 . This curve, which is a cissoid of 

Diocles, has an asymptote at 21. The polar equation is r 1v 2 5
2 1sin v 2 tan v, and the Cartesian equation is x 

3 5 2y 
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whose solution is 

 v 5
21a 1 b 2y 6 "1a 1 b 2 2y2 1 4abx2

2x
. (63) 

We also see that 

 r 1v 2 5 "x2 1 y2 5 2
1

v"v2 1 a2"v2 1 b2
. (64) 

Substituting for v from (63) into (64) yields (59).  h

Example 5: Shifted Strophoid 
Consider the loop transfer function [2] 

 L 1s 2 5
1

s 1s 1 1 2 2
. (65)

It follows from Theorem 4 that the Nyquist plot of L(s) is the 

shifted strophoid. The polar equation is 

 r 1v 2 5
1

v 11 1 v2 2 5
1 1 cos 2u 1v 2

2tan u 1v 2 . 

The Nyquist plot is shown in Figure 13, and the correspond-

ing Cartesian equation is 

 4y4x 1 8x3y2 1 12x2y2 1 8y4 1 4x5 1 4x4 1 x3 5 0. (66) 

 ■

Example 6: “Shifted Strophoid” 

Consider the loop transfer function [2] 

 L 1s 2 5
s 1 1

sa s
10

2 1b . (67) 

For s = jv and v > 0, we have 

 L 1 jv 2 5
10 1 jv 1 1 2
jv 1 jv 2 10 2 5

10 11 1 v2 2 1/2

v 11 1 v2 2 e2jau11v22u21v22 p

2
b

 5 r 1v 2 1sin 1u1 1v 2 2 u2 1v 2 2 2 jcos 1u1 1v 2 2 u2 1v 2 2 2 ,
where 

 u1 1v 2 5 atan2 1v, 1 2 ,  u2 1v 2 5 atan2 1v,210 2 .
Note that the Matlab function atan2 is needed to correctly 

compute the arctangent. For details see “Which Quadrant 

Are We In?” In polar coordinates, we have 

 r 1v 2 5
10 11 1 v2 2 1/2

v 11 1 v2 2 5
10 11 1 tan2 u1 1v 2 2 1/2

tan u1 1v 2 1100 1 tan2 u1 1v 2 2 1/2
.

In addition, we see that 

 Re 1L 1 jv 2 2 5 x 5 r 1v 2sin 1u1 1v 2 2 u2 1v 2 2 ,
 Im 1L 1 jv 2 2 5 y 5 2r 1v 2cos 1u1 1v 2 2 u2 1v 2 2 ,
which implies that 

 
x
y

5 2tan 1u1 1v 2 2 u2 1v 2 2 . 
The Nyquist plot is the “shifted strophoid” shown in Fig-

ure 14. The Cartesian equation is 

12100x4 136300x6y2 2 53240x4y2 136300x4y4 112100x2y6

2 43681x2y4112100x2y2 214641y6 112100x8 224200x6 50.

 (68) 

 ■

FIGURE 13 The Nyquist plot for the third-order Type I loop transfer 

function L 1s2 51/ 3s 1s 11 2 2 4. This curve which is a shifted strophoid 

has an asymptote at 22 . The polar equation is r 1v2 5 111cos 2u 1v22/ 12 tan u 1v 2 2 , and the Cartesian equation is 4y  4x 1 8x  3y  2 1 12x  2y  2 1 

8y  4 1 4x  5 1 4x  4 1 x  3 5 0.
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FIGURE 14 The Nyquist plot for the second-order loop transfer 

function L 1s 2 5 1s 1 1 2/ 3s 10.1s 21 2 4. This curve, which is a 

“shifted strophoid,” has an asymptote at 21.1. The polar equation is 

r 1v 2 5 10 11 1 tan2 u1 1v 2 2 0.5 / 3tan u1 1v 2 1100 1 tan2 u1 1v 2 2 0.5 4, 
and the Cartesian equation is (68).
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Although the shape of the Nyquist curve resembles a 

shifted strophoid, this example does not satisfy the defini-

tion of a shifted strophoid. 

Example 7: Strophoid 
Consider the improper loop transfer function 

 L 1s 2 5
1s2 1 1 2 1s 1 1 2

1 2 s2
. (69) 

For s 5 jv  and v . 0, we have 

 L 1 jv 2 5
11 2 v2 2 1 jv 1 1 2

1 1 v2
5

11 2 v2 2 11 1 v2 2 1/2

1 1 v2
eju1v2

 5 r 1v 2 1cos u 1v 2 2 jsin u 1v 2 2 , 
where 

 r 1v 2 5
11 2 v2 2 11 1 v2 2 1/2

1 1 v2
5 cos 2u 1v 2sec u 1v 2 .

Moreover, we have 

 
y

x
5 tan u 1v 2 .

The Nyquist plot is the strophoid shown in Figure 15. 

The Cartesian equation is 

 y2 5
11 2 x 2x2

1 1 x
. (70)

 ■

Example 8: Cayley’s Sextic 
Consider the loop transfer function 

 L 1s 2 5
11s 1 1 2 3

. (71) 

For s 5 jv  and v . 0, we have 

 L 1 jv 2 5
11 jv 1 1 2 3

5
11v2 1 1 2 3/2

2j3u1v2
 5 r 1v 2 1cos 3u 1v 2 2 2 jsin 3u 1v 2 2 . 
The polar equation is 

 r 1v 2 5 11v2 1 1 2 3/2
5cos3 u 1v 2 5

1

4
13cos u 1v 2 1cos 3u 1v 2 2 .

Moreover, we have 

 
y

x
5 2tan 3u 1v 2 . 

The Nyquist plot is the Cayley’s sextic with a 5 1/4  shown 

in Figure 16. The Cartesian equation is 

The classic trigonometric function arctangent tan21, referred 

to as atan in Matlab, may give the wrong answer for the 

phase of the complex quantity z 5 x 1 jy. In particular, the 

Matlab computation phi 5 atan 1y/x 2  may give the wrong an-

swer if the signs of the real and imaginary parts x and y are 

used to form the sign for the ratio y/x  of the imaginary part 

and the real part. In this way, the information on the proper 

quadrant may be lost. Therefore, we must keep the signs of the 

real x  and the imaginary y  parts separate so that the correct 

quadrant can be identifi ed to yield the right answer as seen 

in Figure S2. One of the jewels in Matlab is the four-quadrant 

arctangent function phi = atan2 Ay, x B , 2p # phi # p. The 

function atan2 in Matlab identifi es the correct quadrant by 

keeping track of the signs of x and y to yield the correct an-

swer for the inverse tangent. 

FIGURE S2 Illustration of the four-quadrant arctangent. The 

function atan2 in Matlab is needed to obtain the correct phase 

angle in arctangent computations. 

atan2 (y,x)

xyπ

–π

atan2 (y,yy x)x

xyπ

–ππππππ

Which Quadrant Are We In? 

FIGURE 15 The Nyquist plot for the improper second-order loop 

transfer function L 1s 2 5 1s 
2 1 1 2 1s 1 1 2/ 11 2 s 

2 2 . This curve, 

which is a strophoid has an asymptote at 21. The polar equation 

is r 1v2 5 1cos  2u 1v2 2  sec  u 1v2 , and the Cartesian equation is 

y 
2 5 x 2 112x 2/111x 2 .
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4ax2 1 y2 2

1

4
xb3

2
27

16
1x2 1 y2 2 2 5 0.

 
(72)

 

 ■

Example 9: Folium of Kepler 

Consider the loop transfer function 

 L 1s 2 5
11s 2 1 2 1s 1 1 2 2

. (73) 

For s 5 jv  and v . 0, we have 

L 1 jv 2 5
11 jv 2 1 2 1 jv 1 1 2 2

 5
111 1 v2 2 3/2

e2j1u11v212u21v22
 5 r 1v 2 1cos 1u1 1v 2 1 2u2 1v 2 2 2 jsin 1u1 1v 2 1 2u2 1v 2 2 2 , 
where 

 u1 1v 2 5 atan2 1v, 21 2 ,  u2 1v 2 5 atan2 1v,1 2 ,
and 

 2v 5 tan u1 1v 2 ,  v 5 tan u2 1v 2 . 
Therefore, we have 

 u1 1v 2 5 2u2 1v 2 .
In polar coordinates we obtain

 r 1v 2 5
111 1 v2 2 3/2

5
111 1 tan2 u1 1v 2 2 3/2

 5 cos u1 1v 2 1sin2 u1 1v 2 2 1 2 , 
which implies that 

 
y
x 5 2tan u2 1v 2 5 2v. 

The Nyquist plot is the folium of Kepler shown in Figure 17. 

The Cartesian equation is 

 1x2 1 y2 2 3x 1x 2 1 2 1 y2 4 1 xy2 5 0. (74)

 ■

Example 10: Nephroid 
Consider the exactly proper [13] loop transfer function 

  L 1s 2 5
2 1s 1 1 2 1s2 2 4s 1 1 21s 2 1 2 3

5
3 1s 1 1 21s 2 1 2 2

1s 1 1 2 31s 2 1 2 3
. (75) 

 For s 5 jv  and v . 0, 

 L 1 jv 2 5
3 1 jv 1 1 21 jv 2 1 2 2

1 jv 1 1 2 3

1 jv 2 1 2 3

 53ej1u11v22p1u21v22 2 ej13u11v22p13u21v22
 53 12cos 2u1 1v 22jsin 2u1 1v 2 2
 2 12cos 6u1 1v 2 2jsin 6u1 1v 2 2 , 
where 

 u1 1v 2 5 tan21 1v 2 ,  v 5 tan u1 1v 2 ,
 u2 1v 2 5 tan21 1v 2 ,  v 5 tan u2 1v 2 .
Furthermore, we see that 

 Re 1L 1 jv 2 2 5 x 5 23cos 2u1 1v 2 1 cos 6u1 1v 2 ,
 Im 1L 1 jv 2 2 5 y 5 23sin 2u1 1v 2 1 sin 6u1 1v 2 ,  
which leads to the relation 

 
x
y

5
23cos 2u1 1v 2 1 cos 6u1 1v 2
23sin 2u1 1v 2 1 sin 6u1 1v 2 . 

FIGURE 17 The Nyquist plot for the third-order loop transfer 

function L 1s 2 5 1/ 3 1s 2 1 2 1s 1 1 2 2 4 . This curve, which is the 

folium of Kepler has the polar equation r 1v2 5 1cos u1 1v2 21  sin2 u1 1v2212 , and the Cartesian equation 1x 
21y 

22 3x 1x 21 2 1
y 

2 4 1 xy 
2 5 0.
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FIGURE 16 The Nyquist plot for the third-order loop transfer 

function L 1s 2 5 1/ 1s 1 1 2 3. This curve, which is a Cayley’s 

sextic, has the polar equation r 1v 2 5 0.25 13 cos u 1v 2  1
r 1v 2 5 0.25 13 cos u 1v 2  1cos 3u 1v 2 2 , and the Cartesian equa-

tion 4 1x 
21y 

220.25x 2 32 127/16 2 1x 
21y 

2 2 2 5 0.
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The Nyquist plot is the nephroid shown in Figure 18. The 

Cartesian equation is 

 1x2 1 y2 2 4 2 3 2 108y2 5 0. (76) 

 ■

Example 11: Nephroid of Freeth 
Consider the exactly proper loop transfer function 

 L 1s 2 5
1s 1 1 2 1s2 1 3 2

4 1s 2 1 2 3
. (77) 

For s 5 jv  we have 

 L 1 jv 2 5
1 jv 1 1 2 1 2v2 1 3 2

4 1 jv 2 1 2 3

5 e r 1v 2 1 2cos 4u 1v 2 2 jsin 4u 1v 2 2 , 0 , v , "3,

2r 1v 2 1cos 4u 1v 2 1 jsin 4u 1v 2 2 , v . "3,
 

where 

 r 1v 2 5
11 1 v2 2 1/2 1 2v2 1 3 2

4 11 1 v2 2 3/2
5

1 2v2 1 3 2
4 11 1 v2 2 ,

 u 1v 2 5 tan21 1v 2 , v 5 tan u 1v 2 .
Furthermore, we obtain the relations 

 Re 1L 1 jv 2 2 5 x 5 e 2r 1v 2cos 4u 1v 2 , 0 , v , "3,

2r 1v 2cos 4u 1v 2 , v . "3,

 Im 1L 1 jv 2 2 5 y 5 e 2r 1v 2sin 4u 1v 2 , 0 , v , "3,

2r 1v 2sin 4u 1v 2 , v . "3,
 

which lead to 

 
y

x
5 tan 4u 1v 2 . 

The Nyquist plot is the nephroid of Freeth with a 5 1/4 

shown in Figure 19. The Cartesian equation is 

  
1x2 1 y2 2 ax2 1 y2 2

1

16
b2

2
1

4
ax2 1 y2 2

1

4
xb2

5 0.
 

(78)
 

 ■

Example 12: Shifted Nephroid of Freeth 
Consider the strictly proper loop transfer function 

 L 1s 2 5
s2 1 11s 2 1 2 3

. (79) 

For s 5 jv , we have 

 L 1 jv 2 5
2v2 1 11 jv 2 1 2 3

 5 e2r 1v 2 1cos 3u 1v 2 1 jsin 3u 1v 2 2 , 0 , v , 1,

2r 1v 2 1cos 3u 1v 2 1 jsin 3u 1v 2 2 , v . 1.
 

In polar coordinates we have 

 r 1v 2 5
2v2 1 111 1 v2 2 3/2

5 cos u 1v 2cos 2u 1v 2 .
Moreover, we observe that 

 Re 1L 1 jv 2 2 5 x 5 e 2r 1v 2cos 3u 1v 2 , 0 , v , 1,

2r 1v 2cos 3u 1v 2 , v . 1,

 Im 1L 1 jv 2 2 5 y 5 e 2r 1v 2sin 3u 1v 2 , 0 , v , 1,

2r 1v 2sin 3u 1v 2 , v . 1,
 

which implies that 

y

x
5 tan 3u 1v 2 .

The Nyquist plot is the shifted nephroid of Freeth shown in 

Figure 20. The Cartesian equation is 

FIGURE 19 The Nyquist plot of the third-order loop transfer func-

tion with a pair of zeros on the jv axis L 1s 2 5 1s 11 2 1s 
2 13 2/34 1s 21 2 3 4 . This curve, which is a nephroid of Freeth has the 

 Cartesian equation given by (78).
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FIGURE 18 The Nyquist plot for the third-order loop transfer 

function L 1s 2 5 2 1s11 2 1s 
224s 112/1s21 2 3. This curve, which 

is a nephroid has the Cartesian equation 1x 
21y 

2242 32108y 
250.
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aax 1

1

4
b2

1 y2b aax 1
1

4
b2

1 y2 2
1

16
b2

 2
1

4
aax 1

1

4
b2

1 y2 2
1

4
ax 1

1

4
bb2

5 0. (80) 

 ■

CONCLUSIONS 
We have shown that the shapes of many Nyquist plots are 

identical to familiar and well-studied plane curves. This 

observation can provide additional insight into the shapes 

of Nyquist plots. Knowing the shape of the Nyquist plot can 

also provide additional useful information about the system 

beyond stability. Table 1 shows a summary of the examples 

and the corresponding shapes of the Nyquist plots. Some 

plane curves, such as the folium of Descartes [7], are not 

symmetric with respect to the horizontal axis, and thus are 

not related to Nyquist curves. Plane curves also appear in 

root locus problems. For details, see “Root Locus and the 

Plane Curves.” Many other examples of the Nyquist plots 

that are related to plane curves can be constructed using the 

techniques discussed here. 
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 TABLE 1 Summary of the example loop transfer functions and the associated plane curves. These examples illustrate that 
the shapes of the Nyquist plots are identical to the well-studied plane curves. The Nyquist curves can be described in either 
polar coordinates or Cartesian coordinates.
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