Model-Based Control and Virtual Sensing with Application to a Vertical Furnace

<u>J. L. Ebert</u>, N. Acharya, D. de Roover, A. Emami-Naeini, R. L. Kosut, J. Zhang

- Vertical Furnace Model
- □ Closed-loop Simulation
- **Temperature Uniformity**
- □ Sensor Failure
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

The Vertical Furnace

17 September 2008

Load Position vs Process Position

SC SOLUTIONS

- □ Full non-linear radiation and conduction model
- □ Two radiation bands (< 3.3 microns >= 3.3 microns)
- Temperature dependent silicon properties (IR transmission and thermal conductivity)
- □ Real-time wafer stack vertical position included
- □ Fast model suitable for real-time execution

Vertical Furnace Model

- □ Closed-loop Simulation
- **Temperature Uniformity**
- **Gensor Failure**
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

Model-Based Control Design

AEC/APC 2008

Closed-loop Simulation

0 17 September 2008

- **Vertical Furnace Model**
- □ Closed-loop Simulation
- **Temperature Uniformity**
- **Sensor Failure**
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

Baseline Wafer Uniformity, No Tuning

SC SOLUTIONS

AEC/APC 2008

Wafer Temperature Uniformity: Optimal

SC SOLUTIONS

AEC/APC 2008

- **Vertical Furnace Model**
- □ Closed-loop Simulation
- **Temperature Uniformity**
- **Gensor Failure**
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

□ What happens if a sensor fails?

- o Could abort, but that might ruin a batch of wafers
- Could hold last good value of power, but that might be bad
- **O Use physics-based model to build a Model-based Estimator**

Sensor Failure

□ Simulate a failure where sensor 1 drops out at t = 2000 s

- **Vertical Furnace Model**
- □ Closed-loop Simulation
- **Temperature Uniformity**
- **Gensor Failure**
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

Estimator Design - Background

A linear system with states x, inputs u, and outputs y can be written as

$$\dot{x} = Ax + Bu + w y = Cx + Du + \nu$$

where w is system noise and ν is measurement noise. An estimator can be built that tracks the output y. This estimated output is \hat{y} and depends on states \hat{x} and can be written as

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y})$$
$$\hat{y} = C\hat{x} + Du$$

where $L = PC^T R^{-1}$ and P satisfies the Riccati equation

$$\dot{P} = AP + PA^T + BQB^T - PC^T R^{-1}CP$$

Here Q and R are weighting matrices we can tune to vary performance.

Estimator Design - Example

17 September 2008

- **Vertical Furnace Model**
- □ Closed-loop Simulation
- **Temperature Uniformity**
- **Sensor Failure**
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

Failure Accommodation

Failure Accommodation

Failure Accommodation

AEC/APC 2008

- Vertical Furnace Model
- □ Closed-loop Simulation
- **Temperature Uniformity**
- **Sensor Failure**
- **Estimator Design**
- □ Failure Accommodation
- **G** Summary

Summary

Developed detailed heat transfer model of furnace.

- Realistic and complex radiation properties
- **Dynamic geometry (wafer stack position)**
- o Fast, real-time model
- Developed model-based multivariable feedback controller.
 - o Robust regulation and tracking
 - o No overshoot
 - o Good temperature uniformity
- Developed model based estimator
 - o Use as virtual sensor to predict unmeasured temperatures.
 - Demonstrated use for sensor failure accommodation.