Model-based Control of MOCVD Rate, Uniformity and Stoichiometry

Sarbajit Ghosal, Jon L. Ebert, Dick de Roover, and Abbas Emami-Naeini

SC SOLUTIONS, Inc.
3211 Scott Boulevard
Santa Clara, CA 95054

Process Control, Diagnostics, and Modeling in Semiconductor Manufacturing III
195th Meeting of the Electrochemical Society,
Seattle, Washington, May 3, 1999
Acknowledgements

• Work funded by DARPA, administered by ONR

• Project partners: MIT, Princeton

• Several very useful discussions with Dr. L. Raja of Colorado School of Mines
Contents

• MOCVD of YBC High Temperature Superconductors
• Reactor Model
• Run-to-run Control
• Summary
YBCO Thin Films

Fully oxygenated orthorhombic unit cell of YBa$_2$Cu$_3$O$_7$. At room temperature the lattice parameters are: $a=3.819\,\text{Å}$, $b=3.883\,\text{Å}$, $c=11.687\,\text{Å}$

Superconducting at temperatures as high as 93K
MOCVD of YBCO Thin Films

• CVD is preferable to PVD larger surfaces areas. For microwave applications (resonators, filters, antenna), a few hundred nm thick films need to be deposited on insulating substrates of diameter of at least 10 cm.

• An early challenge was finding suitable precursors for the metals. Currently, ß-diketones (general formula: \(RCOCH_2COR' \)) is almost exclusively used. The ones considered here is denoted by thd (or dpm) with \(R=R'=C(CH_3)_3 \). They are vaporized at temperatures between 100-250\(^\circ\)C, with vapor pressure between 0.01-1 Torr.
MOCVD of YBCO Thin Films

Steady-state operating conditions:
Gas mixture enters reactor at 10 Torr with mean velocity of 2 m/s and temperature of 240ºC. The inlet mole fractions are: \(O_2 = 0.44, N_2 = 0.47, Ar = 0.088, Y(dpm)_3 = 2.72 \times 10^{-5}, \) \(Ba(dpm)_2 = 4.41 \times 10^{-5}, Cu(dpm)_2 = 2.35 \times 10^{-5} \). Walls at 800ºC.
MOCVD of YBCO Thin Films

- Detailed process chemistry (gas phase and surface kinetics) is not known very well.
- Precursor decomposition, and oxide formation is currently being studied using quantum-mechanical (DFT) calculations as part of this project.
- Meantime, we are using a simplified kinetic mechanism consisting of mostly first-order finite-rate reactions for precursor decomposition, followed by very fast oxide formation. The oxides then diffuse the substrate, with surface kinetics modeled using sticking coefficients.
- CVD model developed using CFDRC’s CFD-ACE® software
CVD Validation Study

Silicon Epitaxy:

\[\text{SiHCl}_3 + \text{H}_2 \rightarrow \text{Si} + 3\text{HCl} \]

CVD Validation Study: Si Epitaxy

Model used temperature-dependent properties, Soret diffusion, multi-component Stefan-Maxwell diffusion.

Comparison with Habuka’s results for epitaxial CVD deposition show deposition rates within 6% of Habuka et al.
MOCVD of YBCO Thin Films

CVD model developed using CFDRC’s CFD-ACE® software
Structured grids, 41 × 14 cells.

Velocities in reactor

Temperature distribution
MOCVD of YBCO Thin Films

![Graph showing precursor mass fractions vs distance along chamber (mm) 5 mm above wafer.]

- **Cu(dpm)2**
- **Y(dpm)3**
- **Ba(dpm)2**
MOCVD of YBCO Thin Films

Growth occurs in a mass transport-limited regime
MOCVD of YBCO Thin Films

- Yttrium oxide dep rate
- Binary diffusivity with oxygen (m^2/s)

Distance along wafer (mm)

Temperature (K)

Sticking coefficient = 1
Sticking coefficient = 0.2

BAR
YBCO
MOCVD of YBCO Thin Films

Chemistry:

\[\text{Y(dpm)}_3 + \text{O}_2 \rightarrow \text{Y} + 3 \text{(dpm)} + \text{O}_2 \]

\[\text{Y(dpm)}_3 \rightarrow \text{Y} + 3 \text{(dpm)} \]

\[\text{Cu(dpm)}_2 \rightarrow \text{Cu} + 2 \text{(dpm)} \]

\[\text{Ba(dpm)}_2 \rightarrow \text{Ba} + 2 \text{(dpm)} \]

\[4 \text{Y} + 3 \text{O}_2 \rightarrow 2\text{Y}_2\text{O}_3 \]

\[2 \text{Ba} + \text{O}_2 \rightarrow 2\text{BaO} \]

\[2 \text{Cu} + \text{O}_2 \rightarrow 2\text{CuO} \]
MOCVD of YBCO Thin Films

YBCO stoichiometry varies along wafer surface. Precursor concentration control can be used to restrict atom ratio within specified bounds (e.g., avoiding BaO-rich deposits).
MOCVD of YBCO Thin Films
MOCVD Control Strategy

Ex-situ measurements:
metrology (dep thickness, uniformity), stoichiometry

In-situ Substrate Temperature Sensor

Dynamic Inner-loop Controller
Actuator (bubbler heater)

nominal process set points

commanded set points

Process:
MOCVD Reactor

nominal process set points

commanded set points

Temperature Sensor

Dynamic Process (Temperature) Controller
Actuator (Substrate Heater)

In-situ Substrate Temperature Sensor

Run-to-run Controller

Ex-situ measurements: metrology (dep thickness, uniformity), stoichiometry

disturbances

disturbances
Introduction to Run-to-Run Control

• Manufacturing: multiple copies of same product
• Product quality determined \textit{after} manufacturing (run)
• Product quality is influenced by \textit{recipe variables}
• Recipe variables are \textit{pre-set} and \textit{fixed} during the run
• Run-to-Run control problem:

\begin{quote}
Adjust recipe for next run based on results of previous runs such that product quality improves
\end{quote}
Proportional Error Control

- Let \(t = 1, 2, \ldots \) denote run number, \(r_t \) the vector of recipe variables during run \(t \), \(y_t \) the vector of product quality attributes at end of run \(t \), and \(e_t \) the normalized product quality error with \(i \)-th element:

\[
e_t(i) = \frac{y_t(i) - y_{\text{des}}(i)}{y_{\text{tol}}(i)}, \quad i = 1, \ldots, n
\]

- Adjust recipe according to:

\[
r_t = r_{\text{nom}} + u_t,
\]

\[
u_t = u_{t-1} - G e_{t-1}, \quad u_0 = 0
\]
Static Linear Error System

Introduction

• Assume actual process is a static linear error system:

\[e_t = w_t + Gu_t, \quad t = 0,1,2,\ldots \]

• \(w_t \) is vector of product quality errors due to nominal control:

\[w_t = e_t \mid r_t = r_{nom} \]

• Error and control:

\[e_t = (I_n - GG)e_{t-1} + w_t - w_{t-1}, \quad e_0 = w_0 \]

\[u_t = (I_m - GG)u_{t-1} - Gw_{t-1}, \quad u_0 = 0 \]
• Note that error system is driven by variation in nominal error. Hence effect of biases can be eliminated, and slow drifts greatly reduced, e.g.:

\[w_t = b + ct + \nu_t \]

then

\[w_t - w_{t-1} = c + \nu_t - \nu_{t-1} \]

with \(b \) denoting bias, and \(c \) denoting drift rate, and \(\nu_t \) a zero-mean random variable.

• However, if \(\nu_t \) has variance \(\sigma^2 \), then \(\nu_t - \nu_{t-1} \) has variance \(2\sigma^2 \)!
• Suppose G is square ($n = m$) and invertible, then the stability analysis suggests the choice:

with μ a real scalar.

• The error and control equation are now given by:

$$e_t = (1 - \mu)e_{t-1} + w_t - w_{t-1}, \quad e_0 = w_0$$

$$u_t = (1 - \mu)u_{t-1} - \mu G^{-1}w_{t-1}, \quad u_0 = 0$$

• The system is stable for:

$$0 < \mu < 2.$$
Obtaining G from Response Surface calculations:

Effect of perturbations of Y (mol/mol) about nominal point:

Effect of perturbations of C_2H_5OH about nominal point:

Effect of perturbations of B (mol/mol) about nominal point:

Effect of perturbations of O_2 about nominal point:
Summary

• A 2D model of MOCVD reactor has been developed for deposition of YBCO thin films.

• System characterization showed the need for control of growth rate, deposition uniformity, and oxide stoichiometry at the surface.

• A run-to-run control architecture was developed, and is currently being implemented.