

Model-based Control of MOCVD Rate, Uniformity and Stoichiometry

Sarbajit Ghosal, Jon L. Ebert, Dick de Roover, and Abbas Emami-Naeini

SCSOLUTIONS, Inc. 3211 Scott Boulevard Santa Clara, CA 95054

Process Control, Diagnostics, and Modeling in Semiconductor Manufacturing III 195th Meeting of the Electrochemical Society, Seattle, Washington, May 3, 1999

Acknowledgements

- Work funded by DARPA, administered by ONR
- Project partners: MIT, Princeton
- Several very useful discussions with Dr. L. Raja of Colorado School of Mines

Contents

- MOCVD of YBC High Temperature Superconductors
- Reactor Model
- Run-to-run Control
- Summary

YBCO Thin Films

Fully oxygenated orthorhombic unit cell of YBa₂Cu₃O₇. At room temperature the lattice parameters are: a=3.819Å, b=3.883Å, c=11.687Å

Superconducting at temperatures as high as 93K

- CVD is preferable to PVD larger surfaces areas. For microwave applications (resonators, filters, antenna), a few hundred nm thick films need to be deposited on insulating substrates of diameter of at least 10 cm.
- An early challenge was finding suitable precursors for the metals. Currently, ß-diketones (general formula: RCOCH₂COR') is almost exclusively used. The ones considered here is denoted by thd (or dpm) with R=R'=C(CH₃)₃. They are vaporized at temperatures between 100-250°C, with vapor pressure between 0.01-1 Torr.

Schematic of a Thomas Swan MOCVD reactor

Steady-state operating conditions:

Gas mixture enters reactor at 10 Torr with mean velocity of 2 m/s and temperature of 240°C. The inlet mole fractions are: $O_2 = 0.44$, $N_2 = 0.47$, Ar = 0.088, $Y(dpm)_3 = 2.72 \times 10^{-5}$, $Ba(dpm)_2 = 4.41 \times 10^{-5}$, $Cu(dpm)_2 = 2.35 \times 10^{-5}$. Walls at 800°C.

- Detailed process chemistry (gas phase and surface kinetics) is not known very well.
- Precursor decomposition, and oxide formation is currently being studied using quantum-mechanical (DFT) calculations as part of this project.
- Meantime, we are using a simplified kinetic mechanism consisting of mostly first-order finite-rate reactions for precursor decomposition, followed by very fast oxide formation. The oxides then diffuse the substrate, with surface kinetics modeled using sticking coefficients.
- CVD model developed using CFDRC's CFD-ACE[®] software

CVD Validation Study

CVD Validation Study: Si Epitaxy

Model used temperaturedependent properties, Soret diffusion, multicomponent Stefan-Maxwell diffusion

Comparison with Habuka's results for epitaxial CVD deposition show deprates within 6% of Habuka et al

Growth occurs in a mass transport-limited regime

Chemistry:

$$Y(dpm)_3 + O_2 \rightarrow Y + 3 (dpm) + O_2$$

$$Y(dpm)_3 \rightarrow Y + 3 (dpm)$$

$$Cu(dpm)_2 \rightarrow Cu + 2 (dpm)$$

$$Ba(dpm)_2 \rightarrow Ba + 2 (dpm)$$

$$4 Y + 3 O_2 \rightarrow 2Y_2O_3$$

$$2 Ba + O_2 \rightarrow 2BaO$$

$$2 Cu + O_2 \rightarrow 2CuO$$

YBCO stoichiometry varies along wafer surface. Precursor concentration control can be used to restrict atom ratio within specified bounds (e.g, avoiding BaOrich deposits)

MOCVD Control Strategy

- Manufacturing: multiple copies of same product
- Product quality determined after manufacturing (run)
- Product quality is influenced by recipe variables
- Recipe variables are pre-set and fixed during the run
- Run-to-Run control problem:

Adjust recipe for next run based on results of previous runs such that product quality improves

Proportional Error Control

• Let t = 1,2,... denote run number, r_t the vector of recipe variables during run t, y_t the vector of product quality attributes at end of run t, and e_t the normalized product quality error with i-th element:

$$e_t(i) = \frac{y_t(i) - y_{des}(i)}{y_{tol}(i)}, \qquad i = 1,...,n$$

Adjust recipe according to:

$$r_t = r_{nom} + u_t,$$

 $u_t = u_{t-1} - Ge_{t-1}, \qquad u_0 = 0$

Static Linear Error System

Introduction

Assume actual process is a static linear error system:

$$e_t = w_t + Gu_t, t = 0,1,2,...$$

 w_t is vector of product quality errors due to nominal control:

$$W_t = e_t | r_t = r_{nom}$$

Error and control:

$$e_t = (I_n - GG)e_{t-1} + W_t - W_{t-1}, e_0 = W_0$$

$$u_t = (I_m - GG)u_{t-1} - GW_{t-1}, \qquad u_0 = 0$$

Static Linear Error System (cont'd)

Introduction

Note that error system is driven by *variation* in nominal error. Hence effect of biases can be eliminated, and slow drifts greatly reduced, e.g.:

then

$$W_t = b + ct + V_t$$

$$W_t - W_{t-1} = C + V_t - V_{t-1}$$

with b denoting bias, and c denoting drift rate, and v_{t} a zero-mean random variable.

However, if v_t has variance σ^2 , then $v_t - v_{t-1}$ has variance 2σ²!

Static Linear Error System

Inverse Control

• Suppose G is square (n = m) and invertible, then the stability analysis suggests the choice:

with ma real scalar.

• The error and control equation are now given by:

$$e_t = (1 - \mu)e_{t-1} + w_t - w_{t-1},$$
 $e_0 = w_0$
 $u_t = (1 - \mu)u_{t-1} - \mu G^{-1}w_{t-1},$ $u_0 = 0$

The system is stable for:

$$0 < \mu < 2$$
.

MOCVD Control

Obtaining *G* from Response Surface calculations:

Summary

- A 2D model of MOCVD reactor has been developed for deposition of YBCO thin films.
- System characterization showed the need for control of growth rate, deposition uniformity, and oxide stoichiometry at the surface.
- A run-to-run control architecture was developed, and is currently being implemented.